Advertisement

Polymeric microsphere-loaded palladium-iminodiacetic acid complex as an efficient and easily recycled catalyst for Suzuki reaction in ionic liquid

  • Jianzheng Zhang
  • Jingshuai ChenEmail author
  • Qiuyu ZhangEmail author
  • Rumin Wang
  • Songhua Wu
Article
  • 7 Downloads

Abstract

Core-crosslinked shelled-core microspheres of poly(styrene-co-methyl acrylic acid) (PS-co-PMAA), with cores rich in PS and the shell rich in PMAA, were synthesized by one-stage soap-free emulsion polymerization. A palladium (Pd)-iminodiacetic acid (IDA) complex catalyst is loaded on the shell of the PS-co-PMAA microsphere, which results in the advantage of high dispersion degree and, therefore, high activity. The resultant polymeric microspheres catalyst systems are then applied to catalyze the Suzuki reaction of aryl halides with phenylboronic acid in an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). Our catalyst systems are proved to be efficient and active for both aryl bromides and aryl iodides. Compared to traditional Pd(Ph3)4 catalyst, the PS-co-PMAA-IDA-Pd catalyst used here affords higher yield of Suzuki reaction at even lower catalyst concentration. In addition, our polymeric-microsphere based catalytic system can be easily recycled at least four times with high activity in ionic [bmim][BF4] liquid.

Keywords

Iminodiacetic acid Ionic liquid Microsphere Palladium Suzuki reaction 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21706002), Natural Science Foundation of Anhui Province (1808085QB53), and the Research Fund of School of Chemistry and Chemical Engineering (Anhui University).

Supplementary material

11164_2019_3738_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 kb)

References

  1. 1.
    N. Miyaura, T. Yanagigand, A. Suzuki, Synth. Commun. 11, 513 (1981)CrossRefGoogle Scholar
  2. 2.
    A. Suzuki, J. Organomet. Chem. 576, 147 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102, 1359 (2002)CrossRefGoogle Scholar
  4. 4.
    L. Yin, J. Liebscher, Chem. Rev. 107, 133 (2007)CrossRefGoogle Scholar
  5. 5.
    Z.C. Xiong, N.D. Wang, M. Dai, A. Li, J.H. Chen, Z. Yang, Org. Lett. 6, 3337 (2004)CrossRefGoogle Scholar
  6. 6.
    L.L. Zhang, Y.L. Guo, A. Iqbal, B. Li, M. Deng, D.Y. Gong, W.S. Liu, W.W. Qin, J. Nanopart. Res. 19, 150 (2017)CrossRefGoogle Scholar
  7. 7.
    R.B. Bedford, S.J.C. Cazin, S.L. Hazelwood, Angew. Chem. Int. Ed. 114, 4294 (2002)CrossRefGoogle Scholar
  8. 8.
    J.P. Stambuli, R. Kuwano, J.F. Hartwig, Angew. Chem. Int. Ed. 41, 4746 (2002)CrossRefGoogle Scholar
  9. 9.
    R.B. DeVasher, L.R. Moore, K.H. Shaughnessy, J. Org. Chem. 69, 7919 (2004)CrossRefGoogle Scholar
  10. 10.
    J.H. Kirchhoff, C. Dai, G.C. Fu, Angew. Chem. Int. Ed. 114, 2025 (2002)CrossRefGoogle Scholar
  11. 11.
    K.N. Sharma, N. Satrawala, R.K. Joshi, Eur. J. Inorg. Chem. 16, 1743 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Ibrahim, I. Malik, W. Mansour, M. Sharif, M. Fettouhi, B.E. Ali, J. Organomet. Chem. 859, 44 (2018)CrossRefGoogle Scholar
  13. 13.
    O. Navarro, R.A. Kelly, S.P. Nolan, J. Am. Chem. Soc. 125, 16194 (2003)CrossRefGoogle Scholar
  14. 14.
    O. Bárta, I. Císařová, P. Štěpnička, Eur. J. Inorg. Chem. 2, 489 (2016)Google Scholar
  15. 15.
    R. Maity, A. Verma, M. van der Meer, S. Hohloch, B. Sarkar, Eur. J. Inorg. Chem. 1, 111 (2016)CrossRefGoogle Scholar
  16. 16.
    H.Y. Liu, X.S. Li, F. Liu, Y. Tan, Y.Y. Jiang, J. Organomet. Chem. 794, 27 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Avila-Sorrosa, H.A. Jiménez-Vázquez, A. Reyes-Arellanoa, J.R. Pioquinto-Mendoza, R.A. Toscano, L. González-Sebastiánb, D. Morales-Morales, J. Organomet. Chem. 819, 69 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Khajehzadeh, M. Moghadam, J. Organomet. Chem. 863, 60 (2018)CrossRefGoogle Scholar
  19. 19.
    H.H. Zhang, J. Han, F. Tian, Q.Z. Chen, C.Z. Wang, H. Jin, G.Y. Bai, Res. Chem. Intermed. 41, 6731 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Borah, S. Mishra, L. Cardenas, G. Nayanmoni, J. Inorg. Chem. 6, 751 (2018)Google Scholar
  21. 21.
    Y.L. Huang, Q. Wei, Y.Y. Wang, L.Y. Dai, Carbon 136, 150 (2018)CrossRefGoogle Scholar
  22. 22.
    S. RoyKula, K.K. Senapati, P. Phukan, Res. Chem. Intermed. 41, 5753 (2014)Google Scholar
  23. 23.
    C. Biglione, A.L. Cappelletti, M.C. Strumia, S.E. MartínPaula, M. Uberman, J. Nanopart. Res. 20, 127 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Chen, J. Zhang, D.J. Zhu, T. Li, J. Porous Mater. 24, 847 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Liu, X.H. Zhao, M. Lu, J. Organomet. Chem. 768, 23 (2014)CrossRefGoogle Scholar
  26. 26.
    B.H. Zhang, Y.G. Xue, A.N. Jiang, Z.M. Xue, Z.H. Li, J.C. Hao, A.C.S. Appl, Mater. Interfaces 9, 7217 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.C. Hu, N. Li, G.Y. Li, A.Q. Wang, Y. Cong, X.D. Wang, T. Zhang, ACS Catal. 7, 2576 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Itoh, Chem. Rev. 117, 10567 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Mondal, A. Das, B. Adhikary, D.K. Mukherjee, J. Nanopart. Res. 16, 2366 (2014)CrossRefGoogle Scholar
  30. 30.
    P.W. Zheng, W.Q. Zhang, J. Catal. 250, 324 (2007)CrossRefGoogle Scholar
  31. 31.
    X.W. Jiang, G.W. Wei, X. Zhang, W.Q. Zhang, P.W. Zheng, F. Wen, L.Q. Shi, J. Mol. Catal. A: Chem. 277, 102 (2007)CrossRefGoogle Scholar
  32. 32.
    X.W. Jiang, Y. Wang, W.Q. Zhang, P.W. Zheng, L.Q. Shi, Macromol. Rapid Commun. 27, 1833 (2006)CrossRefGoogle Scholar
  33. 33.
    S.T. Handy, X. Zhang, Org. Lett. 3, 233 (2001)CrossRefGoogle Scholar
  34. 34.
    J.Z. Zhang, W.Q. Zhang, Y. Wang, M.C. Zhang, Adv. Synth. Catal. 350, 2065 (2008)CrossRefGoogle Scholar
  35. 35.
    C.J. Mathews, P.J. Smith, T. Welton, Chem. Commum. 1249 (2000)Google Scholar
  36. 36.
    M. Pesavento, R. Biesuz, M. Gallorini, A. Profumo, Anal. Chem. 65, 2522 (1993)CrossRefGoogle Scholar
  37. 37.
    C. Pan, M. Liu, L. Zhang, H. Wu, J. Ding, J. Cheng, Catal. Commun. 9, 508 (2008)CrossRefGoogle Scholar
  38. 38.
    A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.-M. Basset, V. Polshottiwar, Chem. Soc. Rev. 40, 5181 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.College of Chemistry and Chemical EngineeringAnhui UniversityHefeiChina
  3. 3.AECC Beijing Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations