Research on Chemical Intermediates

, Volume 45, Issue 3, pp 1565–1580 | Cite as

CeO2 promoting allyl alcohol synthesis from glycerol direct conversion over MoFe/CeO2 oxide catalysts: morphology and particle sizes dependent

  • Hai Lan
  • Jia ZengEmail author
  • Biao Zhang
  • Yi Jiang


MoFe-N, MoFe/c–CeO2, MoFe/p1–CeO2, and MoFe/p2–CeO2 (where N, c, and p stand for non-supported, nanocube, and nanoparticle) oxide catalysts were designed for gas-glycerol direct catalytic conversion into allyl alcohol. The catalysts also were characterized by XRD, TEM, BET, H2-TPR, and NH3-TPD. Mo–Fe oxides were highly dispersed on the surface of c-CeO2 and p-CeO2 supports, different with the MoFe-N consist of crystalline Fe2(MoO4)3 and Fe2O3 crystalline phase. The support effect and special natural property of CeO2 significantly improve the allyl alcohol selectivity from gas-glycerol over MoFe/CeO2. The p-CeO2 with low particle sizes and crystalline degree was superior to high-crystalline nanocube c-CeO2 to promote its interaction with the MoFe oxide active components, and improve the surface acid site concentration and reducibility of MoFe/CeO2 as well as catalytic activity and stability for allyl alcohol synthesis from gas-glycerol without any extra hydrogen donors. Over the MoFe/p2–CeO2, the glycerol conversion reached 97.1%, and the selectivity of allyl alcohol, enthanal, propanoic acid, and acrylic acid were 23.3%, 8.6%, 12.6%, and 7.8%, respectively, yielding allyl alcohol of 22.6%.


Mo–Fe oxides Allyl alcohol Glycerol CeO2 support effect Biomass resource 


  1. 1.
    D.E. Bloom, Science 333, 562 (2011)CrossRefGoogle Scholar
  2. 2.
    C.T. Wu, K.M.K. Yu, F.L. Liao, N. Young, P. Nellist, A. Dent, A. Kroner, S.C.E. Tsang, Nat. Commun. 3, 1050 (2012)CrossRefGoogle Scholar
  3. 3.
    B. Obama, Science 355, 126 (2017)CrossRefGoogle Scholar
  4. 4.
    C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu, Chem. Soc. Rev. 37, 527 (2008)CrossRefGoogle Scholar
  5. 5.
    F.X. Yang, M.A. Hanna, R.C. Sun, Biotechnol. Biofuels 5, 13 (2012)CrossRefGoogle Scholar
  6. 6.
    P. Cintas, S. Tagliapietra, E. Calcio Gaudino, G. Palmisano, G. Cravotto, Green Chem. 16 1056 (2014)Google Scholar
  7. 7.
    R.A. Sheldon, Green Chem. 16, 950 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Nakagawa, M. Tamura, K. Tomishige, Res. Chem. Intermed. 44, 3879 (2018)CrossRefGoogle Scholar
  9. 9.
    H.T. Nguyen, G.S. Kamali Kannangara, Chem. Soc. Rev. 42, 9454 (2013)CrossRefGoogle Scholar
  10. 10.
    D.L. Sun, Y. Yamada, S. Sato, W. Ueda, Appl. Catal. B: Environ. 193, 75 (2016)CrossRefGoogle Scholar
  11. 11.
    NPCS, B.o. Consultants, Engineers, Industrial Alcohol Technology Handbook, Asia Pacific Business Press Inc. (2010)Google Scholar
  12. 12.
    K. Weissermel, H.J. Arpe, Industrial organic chemistry, 4th edition, 312 (1994)Google Scholar
  13. 13.
    J.G. Speight, Chemical and Process Design Handbook, McGraw Hill, (2002)Google Scholar
  14. 14.
    E. Arceo, P. Marsden, R.G. Bergman, J.A. Ellman, Chem. Commun. 203, 3357 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Tazawa, N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, ACS Catal. 6, 6393 (2016)CrossRefGoogle Scholar
  16. 16.
    G.M. Lari, Z.P. Chen, C. Mondelli, J. Pérez-Ramírez, ChemCatChem. 9, 2195 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, H. Tüysüz, C.J. Jia, M. Schwickardi, R. Rinaldi, A.H. Lu, W. Schmidt, F. Schüth, Chem. Commun. 46, 1238 (2010)CrossRefGoogle Scholar
  18. 18.
    T. Yoshikawa, T. Tago, A. Nakamura, A. Konaka, M. Mukaida, T. Masuda, Res. Chem. Intermed. 37, 1247 (2011)CrossRefGoogle Scholar
  19. 19.
    L. Harvey, G. Sánchez, E.M. Kennedy, M. Stockenhuber, Asia-Pac. J. Chem. Eng. 10, 598 (2015)Google Scholar
  20. 20.
    G. Sánchez, B.Z. Dlugogorski, E.M. Kennedy, M. Stockenhuber, Appl. Catal. A: Gen. 509, 130 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Konak, T. Tag, T. Yoshikaw, A. Nakamur, T. Masud, Appl. Catal. B: Environ. 146, 267 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Sánchez, J. Friggieri, C. Keast, M. Drewery, B.Z. Dlugogorski, E. Kennedy, M. Stockenhuber, Appl. Catal. B: Environ. 152–153, 117 (2014)Google Scholar
  23. 23.
    H. Lan, X. Xiao, S.L. Yuan, B. Zhang, G.L. Zhou, Y. Jiang, Acta Phys. Chim. Sin. 33, 2301 (2017)Google Scholar
  24. 24.
    H. Lan, X. Xiao, S.L. Yuan, B. Zhang, G.L. Zhou, Y. Jiang, Catal. Lett. 147, 2187 (2017)CrossRefGoogle Scholar
  25. 25.
    M.H. Haider, N.F. Dummer, D.W. Knight, R.L. Jenkins, M. Howard, J. Moulijn, S.H. Taylor, G.J. Hutchings, Nature Chem. 7, 1028 (2015)CrossRefGoogle Scholar
  26. 26.
    H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, Nanorods, and Nanocubes. J. Phys. Chem. B 109, 24380 (2005)CrossRefGoogle Scholar
  27. 27.
    Y.M. Liu, L.F. Luo, Y.X. Gao, W.X. Huang, Appl. Catal. B Environ. 197, 214 (2016)CrossRefGoogle Scholar
  28. 28.
    S.J. Chang, M. Li, Q. Hua, L.J. Zhang, Y.S. Ma, B.J. Ye, W.X. Huang, J. Catal. 293, 195 (2012)CrossRefGoogle Scholar
  29. 29.
    Y.J. Lee, G.H. He, A.J. Akey, R. Si, I.P. Herman, J. Am. Chem. Soc. 133, 12952 (2011)CrossRefGoogle Scholar
  30. 30.
    G.L. Zhou, B.G. Gui, H.M. Xie, F. Yang, Y. Chen, S.M. Chen, X.X. Zheng, J. Ind. Eng. Chem. 20, 160 (2014)CrossRefGoogle Scholar
  31. 31.
    G.L. Zhou, H. Lan, T.T. Gao, H.M. Xie, Chem. Eng. J. 246, 53 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Lan, G.L. Zhou, C.J. Luo, Y.R. Yu, G.Z. Zhang, Int. J. Chem. React. Eng. 14, 757 (2016)Google Scholar
  33. 33.
    R.M.M. Abbaslou, A. Tavassoli, J. Soltan, A.K. Dalai, Appl. Catal. A: Gen. 367, 47 (2009)CrossRefGoogle Scholar
  34. 34.
    Z.B. Lei, S.Y. Bai, L.Q. Dang, H.A. Xia, S.B. Liu, Micropor. Mesopor. Mater. 123, 306 (2009)CrossRefGoogle Scholar
  35. 35.
    Y.S. Li, Y. Chen, L. Li, J.L. Gu, W.R. Zhao, L. Li, J.L. Shi, Appl. Catal. A: Gen 366, 57 (2009)CrossRefGoogle Scholar
  36. 36.
    S.D. Qina, C.H. Zhang, J. Xu, B.S. Wu, H.W. Xiang, Y.W. Li, J. Mol. Catal. A: Chem. 304, 128 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018
corrected publication 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of Materials Science and EngineeringChongqing JiaoTong UniversityChongqingPeople’s Republic of China
  2. 2.Chengdu Institute of Organic ChemistryChinese Academy of ScienceChengduPeople’s Republic of China
  3. 3.Chongqing Academy of Environmental ScienceChongqingPeople’s Republic of China

Personalised recommendations