Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 3, pp 1619–1637 | Cite as

Synthesis and characterization of guanine-functionalized mesoporous silica [SBA-16-G]: a metal-free and recyclable heterogeneous solid base catalyst for synthesis of pyran-annulated heterocyclic compounds

  • Radha Gupta
  • Samaresh Layek
  • Devendra Deo PathakEmail author
Article
  • 68 Downloads

Abstract

The synthesis of a new solid base catalyst, i.e., guanine-functionalized mesoporous silica [SBA-16-G], is described. The synthesized catalyst has been fully characterized by FTIR, solid state 13C NMR, TGA, XRD, BET, FESEM, EDAX, CHNS elemental analysis, CO2-TPD, and TEM techniques. The surface area and the basicity of the synthesised [SBA-16-G] were found to be 524 m2/g and 3.230 mmol/g, respectively, based on BET and CO2-TPD analysis. The catalytic activity of the synthesized catalyst has been explored in the synthesis of a series of biologically and pharmaceutically active pyran-annulated heterocyclic compounds from a one-pot three-component reaction of an aromatic aldehyde, malononitrile/ethyl cyanoacetate, and a C–H activated acidic compound, in the presence of a catalytic amount (10 wt%) of [SBA-16-G]. The catalyst is metal-free, easy to synthesize and to isolate from the reaction mixture, and recycled up to four times without significant loss of catalytic activity.

Graphical abstract

Keywords

Guanine-functionalized SBA-16 Pyran Metal-free Heterogeneous catalysis Solid base 

Notes

Acknowledgements

RG and SL acknowledge the Director, IIT (ISM), Dhanbad, for awarding research fellowships. The authors would like to thank CRF at IIT (ISM), Dhanbad, for the FESEM images. We are grateful to Vijay Gupta, SRF, Department of Chemistry, IISER Mohali, Punjab, India, for recording the 1H and 13C NMR data.

Supplementary material

11164_2018_3693_MOESM1_ESM.docx (51 mb)
Supplementary material 1 (DOCX 52208 kb)

References

  1. 1.
    H. Hattori, J. Jpn. Petrol. Inst. 47, 67 (2004)Google Scholar
  2. 2.
    A.S. Matlack, Introduction to Green Chemistry, 2nd edn. (CRC Press Taylor & Francis Group, London, 2010), p. 151Google Scholar
  3. 3.
    Y. Ono, T. Baba, Catal. Today 38, 321 (1997)Google Scholar
  4. 4.
    L. Zhu, X.Q. Liu, H.L. Jiang, L.B. Sun, Chem. Rev. 117, 8129 (2017)Google Scholar
  5. 5.
    R. Jothiramalingam, M.K. Wang, Ind. Eng. Chem. Res. 48, 6162 (2009)Google Scholar
  6. 6.
    H. Pines, W.O. Haag, J. Org. Chem. 23, 328 (1958)Google Scholar
  7. 7.
    K. Motahari, A. Salabat, H. Ahmadi, Fuller. Nanotub. Carbon Nanostruct. 26, 342 (2018)Google Scholar
  8. 8.
    Y. Onu, J. Catal. 216, 406 (2003)Google Scholar
  9. 9.
    M. Akizuki, Y. Oshima, Ind. Eng. Chem. Res. 57, 5495 (2018)Google Scholar
  10. 10.
    R. Rinaldi, F. Schuth, Energy Environ. Sci. 2, 610 (2009)Google Scholar
  11. 11.
    E. Safari, A. Hasaninejad, ChemstrySelect 3, 3529 (2018)Google Scholar
  12. 12.
    T. Ebiura, T. Echizen, A. Ishikawa, K. Murai, T. Baba, Appl. Catal. A 283, 111 (2005)Google Scholar
  13. 13.
    A. Marwaha, A. Dhir, S.K. Mahla, S.K. Mohapatra, Sci. Eng. 60, 594 (2018)Google Scholar
  14. 14.
    H. Hattori, Appl. Catal. A Gen. 504, 103 (2015)Google Scholar
  15. 15.
    M. Tang, X. Dou, Z. Tian, M. Yang, Y. Zhang, Chem. Eng. J. 355, 586 (2019)Google Scholar
  16. 16.
    K. Liu, R. Wang, M. Yu, Renew. Energy 127, 531 (2018)Google Scholar
  17. 17.
    V. Chiola, J. E. Ritsko, C.D. Vanderpool, U.S. Patent 3 556 725, 1971Google Scholar
  18. 18.
    S. Sahoo, A. Bordoloi, S.B. Halligudi, Catal. Surv. Asia 15, 200 (2011)Google Scholar
  19. 19.
    F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504 (2012)Google Scholar
  20. 20.
    H. Sepehrian, J. Fasihi, M.M. Khayatzadeh, Ind. Eng. Chem. Res. 48, 6772 (2009)Google Scholar
  21. 21.
    L. Geng, Y. He, D. Liu, X. Dai, C. Lu, Microporous Mesoporous Mater. 148, 8 (2012)Google Scholar
  22. 22.
    J.A. Melero, R.V. Grieken, G. Morales, Chem. Rev. 106, 3790 (2006)Google Scholar
  23. 23.
    F. Shieh, C.T. Hsiao, J.W. Wu, Y.C. Sue, Y.L. Bao, Y.H. Liu, L. Wan, M.H. Hsu, J.R. Deka, H.M. Kao, J. Hazard. Mater. 206, 1083 (2013)Google Scholar
  24. 24.
    M. Karin, B. Thomas, Chem. Mater. 10, 2950 (1998)Google Scholar
  25. 25.
    O. Olkhovyk, M. Jaroniec, J. Am. Chem. Soc. 127, 60 (2005)Google Scholar
  26. 26.
    Y. Zhang, Z.A. Qiao, Y. Li, Y. Liu, Q. Huo, J. Mater. Chem. 21, 17283 (2011)Google Scholar
  27. 27.
    A. Stein, B.J. Melde, R.C. Schroden, Adv. Mater. 12, 1403 (2000)Google Scholar
  28. 28.
    X. Zhuang, Y. Wan, C. Feng, Y. Shen, D. Zhao, Chem. Mater. 21, 706 (2009)Google Scholar
  29. 29.
    S. Zhang, H. Wang, L. Tang, M. Li, J. Tian, Y. Cui, J. Han, X. Zhu, X. Liu, Appl. Catal. B Environ. 220, 303 (2018)Google Scholar
  30. 30.
    S. Zhang, H. Wang, M. Li, J. Han, X. Liu, J. Gong, Chem. Sci. 8, 4489 (2017)Google Scholar
  31. 31.
    M. Waki, Y. Maegawa, K. Hara, Y. Goto, S. Shirai, Y. Yamada, N. Mizoshita, T. Tani, W.J. Chun, S. Muratsugu, M. Tada, A. Fukuoka, S. Inagaki, J. Am. Chem. Soc. 136, 4003 (2014)Google Scholar
  32. 32.
    R. Voss, A. Thomas, M. Antonietti, G. Ozin, J. Mater. Chem. 15, 4010 (2005)Google Scholar
  33. 33.
    M. Lim, C. Blanford, A. Stein, Chem. Mater. 10, 467 (1998)Google Scholar
  34. 34.
    M.E. Davis, Nature 417, 813 (2002)Google Scholar
  35. 35.
    K. Parida, K.G. Mishra, S.K. Dash, Ind. Eng. Chem. Res. 51, 2235 (2012)Google Scholar
  36. 36.
    K. Parida, S.K. Dash, J. Hazard. Mater. 179, 642 (2010)Google Scholar
  37. 37.
    H. Chaudhuri, S. Dash, A. Sarkar, Ind. Eng. Chem. Res. 55, 10084 (2016)Google Scholar
  38. 38.
    P. Das, A. Dutta, A. Bhaumik, C. Mukhopadhyay, Green Chem. 16, 1426 (2014)Google Scholar
  39. 39.
    G. Feuer, in Progress in Medicinal Chemistry, ed. by G.P. Ellis, G.P. West (North-Holland Publishing Company, New York, 1974)Google Scholar
  40. 40.
    L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem. 28, 517 (1993)Google Scholar
  41. 41.
    G.M. Cingolani, F. Gualtteri, M. Pigin, J. Med. Chem. 12, 531 (1961)Google Scholar
  42. 42.
    J.Y.C. Wu, W.F. Fong, J.X. Zhang, C.H. Leung, H.L. Kwong, M.S. Yang, D. Li, H.Y. Cheung, Eur. J. Pharmacol. 473, 9 (2003)Google Scholar
  43. 43.
    P.K. Paliwal, S.R. Jetti, S. Jain, Med. Chem. Res. 22, 2984 (2013)Google Scholar
  44. 44.
    C.W. Smith, J.M. Bailey, M.E.J. Billingham, S. Chandrasekhar, C.P. Dell, A.K. Harvey, C.A. Hicks, A.E. Kingston, G.N. Wishart, Bioorg. Med. Chem. 5, 2783 (1995)Google Scholar
  45. 45.
    Y. Kashman, K.R. Gustafson, R.W. Fuller, J.H. Cardellina, J.B. McMahon, M.J. Currens, R.W. Buckheit, S.H. Hughes, G.M. Gragg, M.R. Boyd, J. Med. Chem. 35, 2728 (1992)Google Scholar
  46. 46.
    P.G. Baraldi, S. Manfredini, D. Simoni, M.A. Tabrizi, J. Balzarini, E.D. Clercq, J. Med. Chem. 35, 1877 (1992)Google Scholar
  47. 47.
    W.O. Foye, Principi di Chemico Farmaceutica, Piccin (Padora, Italy, 1991), p. 416Google Scholar
  48. 48.
    L.L. Andreani, E. Lapi, Bull. Chim. Farm. 99, 583 (1960)Google Scholar
  49. 49.
    Y.L. Zhang, B.Z. Chen, K.Q. Zheng, M.L. Xu, X.H. Lei, Yao Xue Bao 17, 17 (1982)Google Scholar
  50. 50.
    L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem. 28, 517 (1993)Google Scholar
  51. 51.
    G.P. Ellis, in The Chemistry of Heterocyclic Compounds: Chromenes, Chromanes and Chromones, ed. by A. Weissberger, E.C. Taylor (Wiley, New York, 1977), p. 11Google Scholar
  52. 52.
    D. Arnesto, W.M. Horspool, N. Martin, A. Ramos, C. Seaone, J. Org. Chem. 54, 3069 (1989)Google Scholar
  53. 53.
    A.T. Khan, M. Lal, S. Ali, MdM Khan, Tetrahedron Lett. 52, 5327 (2011)Google Scholar
  54. 54.
    G. Brahmachari, B. Banerjee, A.C.S. Sustain, Chem. Eng. 2, 411 (2014)Google Scholar
  55. 55.
    J.M. Khurana, B. Nand, P. Saluja, Tetrahedron 66, 5637 (2010)Google Scholar
  56. 56.
    R. Ghorabani-Vaghei, Z. Toghraei-Semiromi, R. Karimi-Nami, J. Braz. Chem. Soc. 5, 905 (2011)Google Scholar
  57. 57.
    S. Balalaie, M. Bararjanian, M. Sheikh-Ahmadi, S. Hekmat, P. Salehi, Synth. Commun. 37, 1097 (2007)Google Scholar
  58. 58.
    Y. Sarrafi, E. Mehrasbi, A. Vahid, M. Tajbakhsh, Chin. J. Catal. 33, 1486 (2012)Google Scholar
  59. 59.
    K. Gong, H.L. Wang, J. Luo, Z.L.J. Liu, Heterocycl. Chem. 46, 1145 (2009)Google Scholar
  60. 60.
    S. Paul, P. Bhattacharyya, A.R. Das, Tetrahedron Lett. 52, 4636 (2011)Google Scholar
  61. 61.
    T.S. Jin, A.Q. Wang, X. Wang, J.S. Zhang, T.S. Li, Synlett 5, 0871 (2004)Google Scholar
  62. 62.
    M. Khoobi, L. Mamani, F. Rezazadeh, Z. Zareie, A. Foroumadi, A. Ramazani, A. Shafiee, J. Mol. Catal. A Chem. 359, 74 (2012)Google Scholar
  63. 63.
    Y. Essamlali, O. Amadine, H. Maati, K. Abdelouahdi, A. Fihri, M. Zahouily, R.S. Varma, A. Solhy, A.C.S. Sustain, Chem. Eng. 1, 1154 (2013)Google Scholar
  64. 64.
    I.A. Azath, P. Puthiaraj, K. Pitchumani, A.C.S. Sustain, Chem. Eng. 1, 174 (2013)Google Scholar
  65. 65.
    A. Montaghami, N. Montazeri, Orient. J. Chem. 30, 1361 (2014)Google Scholar
  66. 66.
    D. Azarifar, M. Tadayoni, M. Ghaemi, Appl. Organometal. Chem. 32, 4293 (2018)Google Scholar
  67. 67.
    A. Dandia, S. Bansal, R. Sharma, V. Parewa, ChemistrySelect 3, 9785 (2018)Google Scholar
  68. 68.
    R.C. Cioc, E. Ruijter, R.V.A. Orru, Green Chem. 16, 2958 (2014)Google Scholar
  69. 69.
    P. Ravichandiran, B. Lai, Y. Gu, Chem. Rec. 17(2), 142 (2016)Google Scholar
  70. 70.
    R. Bai, J. Yang, L. Min, C. Liu, F. Wu, Y. Gu, Tetrahedron 72, 2170 (2016)Google Scholar
  71. 71.
    H. Chaudhuri, R. Gupta, S. Das, Catal. Lett. 148, 1703 (2018)Google Scholar
  72. 72.
    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)Google Scholar
  73. 73.
    H. Chaudhuri, S. Dash, A. Sarkar, Ind. Eng. Chem. Res. 56, 2943 (2017)Google Scholar
  74. 74.
    A. Alizadeh, M.M. Khodaei, D. Koedsetani, A.H. Fallah, M. Beygzadeh, Microporous Mesoporous Mater. 159, 9 (2012)Google Scholar
  75. 75.
    P.G. Choi, T. Ohno, N. Fukuhara, T. Masui, N. Imanaka, J. Adv. Ceram. 4, 71 (2015)Google Scholar
  76. 76.
    R. Ouargli-Saker, N. Bouazizi, B. Boukoussa, D. Barrimo, A. Beltrao, A. Azzouz, Appl. Surf. Sci. 411, 476 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations