Advertisement

Selective phenol hydrogenation under mild condition over Pd catalysts supported on Al2O3 and SiO2

  • Xinzheng Li
  • Ling Cheng
  • Xingyi Wang
Article
  • 22 Downloads

Abstract

Cyclohexanone (CHONE) is the key intermediate in the manufacture of nylon-6 and nylon-66. Selective hydrogenation of phenol into CHONE was investigated over Pd/SiO2 and Pd/Al2O3. The results show that the yield of CHONE reaches 98% or more over Pd/Al2O3 and Pd/SiO2 at 333 K under atmospheric pressure in cyclohexane solvent. High activity of Pd/Al2O3 is promoted by Lewis acidity, and phenol can be converted 100% within 300 min. The hydrogenation of CHONE occurs until the conversion of phenol approaches completion. Pd/SiO2 with smaller Pd nano-particles presents higher selectivity. For polar solvent, such as ethanol and dichloromethane, the activity of Pd catalysts decreases greatly. Auxiliary experiments verify that phenol adsorbs on Pd catalysts via the formation of π–c with an aromatic ring. Increased hydrogen pressure not only promotes significantly the rates of hydrogenation, but also increases the selectivity for CHONE, especially over Pd/SiO2-1 catalyst.

Keywords

Catalytic hydrogenation Solvent effect Pd Phenol Cyclohexanone 

Notes

Acknowledgements

We would like to acknowledge the National Key Research and Development Program of China (no. 2016YFC0204300) and National Natural Science Foundation of China (nos. 21477036 and 21777043).

Supplementary material

11164_2018_3687_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 120 kb)

References

  1. 1.
    K. Weissermel, H.J. Arpe, Industrial Organic Chemistry (VHC, Weinheim, 1993), p. 251Google Scholar
  2. 2.
    M. Howe-Grant (ed.), Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, 1991)Google Scholar
  3. 3.
    L. Liu, Y. Li, H. Wei, M. Dong, J. Wang, A.M. Slawin, J. Li, J. Dong, R.E. Morris, Angew. Chem. Int. Ed. 48, 2206 (2009)CrossRefGoogle Scholar
  4. 4.
    S.G. Shore, E. Ding, C. Park, M.A. Keane, Catal. Commun. 3, 77 (2002)CrossRefGoogle Scholar
  5. 5.
    L.M. Sikhwivhilu, N.J. Coville, D. Naresh, K.V.R. Chary, V. Vishwanathan, Appl. Catal. A Gen. 324, 52 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Scirè, S. Minicò, C. Crisafulli, Appl. Catal. A Gen. 235, 21 (2002)CrossRefGoogle Scholar
  7. 7.
    A.M. Barrios, C.A. Teles, P.M. de Souza, R.C. Rabelo-Neto, G. Jacobs, B.H. Davis, L.E.P. Borges, F.B. Noronha, Catal. Today 302, 115 (2018)CrossRefGoogle Scholar
  8. 8.
    P.M. de Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, U.M. Graham, D.E. Resasco, F.B. Noronha, ACS. Catal. 5, 7385 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Narayanan, K. Krishna, Appl. Catal. A Gen. 198, 13 (2000)CrossRefGoogle Scholar
  10. 10.
    Y.Z. Chen, C.W. Liaw, I. Lee, Appl. Catal. A Gen. 177, 1 (1999)CrossRefGoogle Scholar
  11. 11.
    N. Mahata, V. Vishwanathan, Catal. Today 49, 65 (1999)CrossRefGoogle Scholar
  12. 12.
    P. Claus, H. Berndt, C. Mohr, J. Radnik, E.J. Shin, M.A. Keane, J. Catal. 192, 88 (2000)CrossRefGoogle Scholar
  13. 13.
    N. Mahata, V. Vishwanathan, J. Catal. 196, 262 (2000)CrossRefGoogle Scholar
  14. 14.
    K.A. Resende, C.A. Teles, G. Jacobs, B.H. Davis, D.C. Cronauer, A.J. Kropf, C.L. Marshall, C.E. Hori, F.B. Noronha, Appl. Catal. B Environ. 232, 213 (2018)CrossRefGoogle Scholar
  15. 15.
    N. Mahata, K.V. Raghavan, V. Vishwanathan, C. Park, M.A. Keane, Phys. Chem. Chem. Phys. 3, 2712 (2001)CrossRefGoogle Scholar
  16. 16.
    K.V.R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, W. Ueda, Catal. Commun. 8, 471 (2007)CrossRefGoogle Scholar
  17. 17.
    K.A. Resende, C.E. Hori, F.B. Noronha, H. Shi, O.Y. Gutierrez, D.M. Camaioni, J.A. Lercher, Appl. Catal. A Gen. 548, 128 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Hu, G.X. Yang, H. Jiang, Y.F. Liu, R.Z. Chen, Appl. Surf. Sci. 435, 649 (2018)CrossRefGoogle Scholar
  19. 19.
    Y.Y. Zhu, G.Q. Yu, J. Yang, M. Yuan, D. Xu, Z.P. Dong, J. Colloid Interface Sci. 533, 259 (2019)CrossRefPubMedGoogle Scholar
  20. 20.
    S. Hu, X. Zhang, Z.Y. Qu, H. Jiang, Y.F. Liu, J. Huang, W.H. Xing, R.Z. Chen, J. Ind. Eng. Chem. 53, 333 (2017)CrossRefGoogle Scholar
  21. 21.
    J.F. Van Peppen, W.B. Fisher, C.H. Chan, in Phenol Hydrogenation Process in Catalysis of Organic Reactions, ed. by R.L. Augustine (Marcel Dekker, New York, 1980), p. 355Google Scholar
  22. 22.
    H.H. Liu, T. Jiang, B.X. Han, S.G. Liang, Y.X. Zhou, Science 326, 1250 (2009)CrossRefPubMedGoogle Scholar
  23. 23.
    R.D.D. Putra, H.L. Trajano, S.D. Liu, H. Lee, K. Smith, C.S. Kim, Chem. Eng. J. 350, 181 (2018)CrossRefGoogle Scholar
  24. 24.
    N. Itoh, W. Xu, Appl. Catal. A Gen. 107, 83 (1993)CrossRefGoogle Scholar
  25. 25.
    H. Li, J. Liu, S. Xie, M. Qiao, W. Dai, Y.F. Lu, H.X. Li, Adv. Funct. Mater. 18, 3235 (2008)CrossRefGoogle Scholar
  26. 26.
    C. Park, M.A. Keane, J. Colloid Interface Sci. 266, 183 (2003)CrossRefPubMedGoogle Scholar
  27. 27.
    X. Yang, S.J. Liao, J.H. Zeng, Z.X. Liang, Appl. Surf. Sci. 257, 4472 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Zheng, P. He, Y. Fang, X. Yang, H. Liang, RSC. Adv. 7, 31582 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Matos, A. Corma, Appl. Catal. A Gen. 404, 103 (2011)CrossRefGoogle Scholar
  30. 30.
    X. Yang, L. Du, S.J. Liao, Y.X. Li, H.J. Song, Catal. Commun. 17, 29 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Yoshida, S. Narisawa, S. Fujita, M. Arai, J. Mol. Catal. A Chem. 379, 80 (2013)CrossRefGoogle Scholar
  32. 32.
    Y.J. Lao, N.X. Zhu, X.X. Jiang, J. Zhao, Q.G. Dai, X.Y. Wang, Catal. Sci. Technol. 8, 4797 (2018)Google Scholar
  33. 33.
    J.A. Anderson, A. Athawale, F.E. Imrie, F.-M.M. Kenna, A.M. Cue, D. Molyneux, K. Power, M. Shand, R.P.K. Wells, J. Catal. 270, 9 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratory for Advanced Materials, Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiChina

Personalised recommendations