Advertisement

Doping effects on mixed-phase crystalline perovskite AxSr1−xFeO3−δ (A = Pr, Sm; 0 ≤ x  ≤ 0.8) nanoparticles and their application for photodegradation of rhodamine B

  • Minh Ngoc Ha
  • Lichao Wang
  • Zhe Zhao
Article
  • 20 Downloads

Abstract

A series of doped perovskite AxSr1xFeO3δ (A = Pr, Sm; 0 ≤ x ≤ 0.8) nanoparticles were synthesized using a solution combustion method. By doping lanthanide elements, the crystal phase of the perovskite SrFeO3δ (SFO) changed from cubic to orthorhombic system. Phase transitions and mixed-phase components of prepared catalysts can be successfully controlled only by varying the mole ratio of A-site doping at 800 °C for 5 h. Compared with pure SFO, the Pr/Sm-doped SFO samples exhibited enhanced absorption capability especially in the visible light region. The band gap of Pr/Sm-doped SFO samples was gradually decreased and the BET surface area increased with the increase of the Pr and Sm dopant content. The perovskite AxSr1xFeO3δ (A = Pr, Sm; x = 0.6, 0.8) included mixed phases of cubic and orthorhombic crystallinity and exhibited better photocatalytic degradation of rhodamine B (RhB) than single cubic phase. The photodegradation efficiency of RhB was increased with an increasing amount of A-site doping.

Keywords

Perovskite Photodegradation Mixed phases Phase transition Photocatalytic oxidation 

Notes

Acknowledgements

This research is funded by the VNU University of Science under project number TN.17.24.

Supplementary material

11164_2018_3676_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, B. Yan, J. Hazard. Mater. 152, 1301 (2008)CrossRefPubMedGoogle Scholar
  2. 2.
    J.-W. Lee, S.-P. Choi, R. Thiruvenkatachari, W.-G. Shim, H. Moon, Dyes Pigments 69, 196 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Madhavan, F. Grieser, M. Ashokkumar, Ultrason. Sonochem. 17, 338 (2010)CrossRefPubMedGoogle Scholar
  4. 4.
    A.B. Isaev, Z.M. Aliev, N.K. Adamadzieva, N.A. Alieva, G.A. Magomedova, Nanotechnol. Russ. 4, 475 (2009)CrossRefGoogle Scholar
  5. 5.
    A.H. Mahvi, M. Ghanbarian, S. Nasseri, A. Khairi, Desalination 239, 309 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Janus, A.W. Morawski, Appl. Catal. B 75, 118 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Kaur, V. Singh, J. Hazard. Mater. 141, 230 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    R. Vinu, S.U. Akki, G. Madras, J. Hazard. Mater. 176, 1 (2010)CrossRefGoogle Scholar
  9. 9.
    C.-Y. Chen, Water Air Soil Pollut. 202, 1 (2009)CrossRefGoogle Scholar
  10. 10.
    H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, J. Hazard. Mater. 162, 674 (2009)CrossRefPubMedGoogle Scholar
  11. 11.
    Z. Zhang, D. Xu, M. Shen, D. Wu, Z. Chen, X. Ji, F. Li, Y. Xu, Water Sci. Technol. 63, 3 (2011)Google Scholar
  12. 12.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Xu, Y. Ao, D. Fu, C. Yuan, J. Phys. Chem. Solids 69, 1980 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Kong, T. Yang, Z. Rui, H. Ji, Today (2018).  https://doi.org/10.1016/j.cattod.2018.06.045 CrossRefGoogle Scholar
  15. 15.
    J. Grzechulska, A.W. Morawski, Appl. Catal. B 36, 45 (2002)CrossRefGoogle Scholar
  16. 16.
    L. Jia, T. Ding, Q. Li, Y. Tang, Catal. Commun. 8, 963 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Zhang, X. Fu, S. Niu, Q. Xin, J. Alloys Compd. 459, 103 (2008)CrossRefGoogle Scholar
  18. 18.
    X. Gu, Y. Wang, T. Zhang, D. Liu, R. Zhang, P. Zhang, J. Wu, Z.D. Chen, S. Li, J. Mater. Chem. C 5, 41 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Zhang, J. Wu, P. Zhang, W. Ahmad, Y. Wang, M. Alqahtani, H. Chen, C. Gao, Z.D. Chen, Z. Wang, S. Li, Adv. Opt. Mater. 6, 13 (2018)Google Scholar
  20. 20.
    S. Li, P. Zhang, H. Chen, Y. Wang, D. Liu, J. Wu, H. Sarvari, Z.D. Chen, J. Power Sources 342, 990 (2017)CrossRefGoogle Scholar
  21. 21.
    D. Liu, S. Li, P. Zhang, Y. Wang, R. Zhang, H. Sarvari, F. Wang, J. Wu, Z. Wang, Z.D. Chen, Nano Energy 31, 462 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Zhang, M.A. Gondal, W. Wei, T. Zhang, Q. Xu, K. Shen, J. Alloys Compd. 530, 107 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, N. Ponpandian, Chem. Eng. J. 209, 420 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Kong, Z. Rui, S. Liu, H. Liu, H. Ji, Chem. Commun. 53, 91 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Sun, C.M. Li, Phys. Chem. Chem. Phys. 17, 6718 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    B. Sun, W. Zhao, H. Li, L. Wei, P. Chen, Chem. Phys. Lett. 613, 100 (2014)CrossRefGoogle Scholar
  27. 27.
    B. Sun, H. Li, L. Wei, P. Chen, RSC Adv. 4, 50102 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, J. Chen, X. Wu, Mater. Lett. 49, 361 (2001)CrossRefGoogle Scholar
  29. 29.
    R. Bredesen, T. Norby, A. Bardal, V. Lynum, Solid State Ion. 135, 687 (2000)CrossRefGoogle Scholar
  30. 30.
    P. Adler, U. Schwarz, K. Syassen, A.P. Milner, M.P. Pasternak, M. Hanfland, J. Solid State Chem. 155, 381 (2000)CrossRefGoogle Scholar
  31. 31.
    H. Falcón, J.A. Barbero, J.A. Alonso, M.J. Martínez-Lope, J.L.G. Fierro, Chem. Mater. 14, 2325 (2002)CrossRefGoogle Scholar
  32. 32.
    K. Ji, H. Dai, J. Deng, L. Zhang, F. Wang, H. Jiang, C.T. Au, Appl. Catal. A 425, 153 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Ghaffari, P.Y. Tan, M.E. Oruc, O.K. Tan, M.S. Tse, M. Shannon, Catal. Today 161, 70 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Hu, J. Ma, L. Wang, H. Huang, L. Ma, Powder Technol. 254, 556 (2014)CrossRefGoogle Scholar
  35. 35.
    H.-C. Chen, C.-W. Huang, J.C.S. Wu, S.-T. Lin, J. Phys. Chem. C 116, 7897 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Froyen, M.L. Cohen, Phys. Rev. B 28, 3258 (1983)CrossRefGoogle Scholar
  37. 37.
    Y. Babu, M.D. Sastry, B.A. Dasannacharya, S. Balakumar, R. Ilangovan, P. Ramasamy, M.D. Aggarwal, J. Phys.: Condens. Matter 8, 7847 (1996)Google Scholar
  38. 38.
    B.B. Karki, R.M. Wentzcovitch, Phys. Rev. B 68, 224304 (2003)CrossRefGoogle Scholar
  39. 39.
    N.K. Kumawat, M.N. Tripathi, U. Waghmare, D. Kabra, J. Phys. Chem. A 120, 3917 (2016)CrossRefPubMedGoogle Scholar
  40. 40.
    Q. Wang, M. Lyu, M. Zhang, J.-H. Yun, H. Chen, L. Wang, J. Phys. Chem. Lett. 6, 4379 (2015)CrossRefPubMedGoogle Scholar
  41. 41.
    H. Zhang, B. Gilbert, F. Huang, J.F. Banfield, Nature 424, 1025 (2003)CrossRefPubMedGoogle Scholar
  42. 42.
    S. Vemparala, R.K. Kalia, A. Nakano, P. Vashishta, J. Chem. Phys. 121, 5427 (2004)CrossRefPubMedGoogle Scholar
  43. 43.
    Z. Wan, G. Zhang, Sci. Rep. 4, 6298 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Q. Wang, J. Lian, J. Li, R. Wang, H. Huang, B. Su, Z. Lei, Sci. Rep. 5, 13593 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, J.G. McEvoy, Appl. Surf. Sci. 271, 171 (2013)CrossRefGoogle Scholar
  46. 46.
    K. Prasad, R. Sarkar, S.V. Kamat, T.K. Nandy, J. Alloys Compd. 509, 7361 (2011)CrossRefGoogle Scholar
  47. 47.
    G.Q. Zhong, H. Xiong, Y.Q. Jia, Mater. Chem. Phys. 91, 10 (2005)CrossRefGoogle Scholar
  48. 48.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  49. 49.
    T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S.-I. Orimo, Sci. Rep. 6, 23592 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    S. Guo, H. Wu, F. Puleo, L. Liotta, Catalysts 5, 366 (2015)CrossRefGoogle Scholar
  51. 51.
    R. Mariappan, M. Ragavendar, V. Ponnuswamy, J. Alloys Compd. 509, 7337 (2011)CrossRefGoogle Scholar
  52. 52.
    L. Yuliati, M. Kimi, M. Shamsuddin, Beilstein J. Nanotechnol. 5, 587 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    M.N. Ha, G. Lu, Z. Liu, L. Wang, Z. Zhao, J. Mater. Chem. A 4, 13155 (2016)CrossRefGoogle Scholar
  54. 54.
    N.P. Bansal, Z. Zhong, J. Power Sources 158, 148 (2006)CrossRefGoogle Scholar
  55. 55.
    D. Berger, C. Matei, F. Papa, D. Macovei, V. Fruth, J.P. Deloume, J. Eur. Ceram. Soc. 27, 4395 (2007)CrossRefGoogle Scholar
  56. 56.
    L. da Conceição, A.M. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, Mater. Res. Bull. 46, 308 (2011)CrossRefGoogle Scholar
  57. 57.
    Q. Lin, M. Greenblatt, E.A.N. Caspi, M. Avdeev, J. Solid State Chem. 179, 2086 (2006)CrossRefGoogle Scholar
  58. 58.
    M. Machida, J.-I. Yabunaka, T. Kijima, Chem. Mater. 12, 812 (2000)CrossRefGoogle Scholar
  59. 59.
    K. Peng, L. Fu, H. Yang, J. Ouyang, Sci. Rep. 6, 19723 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    X. Zhang, C.-Y. Wang, L.-W. Wang, G.-X. Huang, W.-K. Wang, H.-Q. Yu, Sci. Rep. 6, 22800 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, Y. Huang, Sci. Rep. 6, 26467 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    J.K. Reddy, B. Srinivas, V.D. Kumari, M. Subrahmanyam, ChemCatChem 1, 492 (2009)CrossRefGoogle Scholar
  63. 63.
    S. Wu, J. Fang, X. Xu, Z. Liu, X. Zhu, W. Xu, Photochem. Photobiol. 88, 1205 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.VNU Key Laboratory of Advanced Materials for Green Growth, VNU University of ScienceVietnam National UniversityHanoiVietnam
  2. 2.Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China
  4. 4.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations