Research on Chemical Intermediates

, Volume 45, Issue 2, pp 893–905 | Cite as

Low-temperature molten salt process for the synthesis of NaBi7P2O16 nano-plates with excellent photocatalytic activity

  • Lu Liu
  • Shiyue Yao
  • Bo LiangEmail author
  • Weifeng LiEmail author


In this work, a facile low-temperature molten salt route for the synthesis of NaBi7P2O16 nano-plates has been demonstrated without needing any templates or surfactants, in which Na3PO4·12H2O was employed to act as the medium, as well as the reactant. The crystal structure and morphology of the products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The experiments suggested that the Na3PO4·12H2O content has great effect on the microstructure of NaBi7P2O16. The pure rhombic phase of NaBi7P2O16 with plate-like shape can be obtained at a molar ratio of 1:10 between Bi(NO3)3·5H2O and Na3PO4·12H2O. The photocatalytic activity of NaBi7P2O16 nano-plates was investigated by the degradation of rhodamine B (RhB) and methyl orange under ultraviolet light irradiation. NaBi7P2O16 nano-plates exhibited better photocatalytic activity than that of commercial P25 photocatalyst, which was attributed to the more positive of valence band and the large negative charge of PO43− ions in NaBi7P2O16. Moreover, NaBi7P2O16 nano-plates possess desirable photochemical stability, which favors practical application for removing contaminants in water. This work provides a green way for synthesizing high-performance photocatalysts.


NaBi7P2O16 Nano-plates Photocatalysis Molten salt 



This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (Grant No. PAPD).


  1. 1.
    W.H. Dong, D.D. Wu, J.M. Luo, Q.J. Xing, H. Liu, J.P. Zou, X.B. Luo, X.B. Min, H.L. Liu, S.L. Luo, C.T. Au, J. Catal. 349, 218 (2017)CrossRefGoogle Scholar
  2. 2.
    X. Li, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 45, 2603 (2016)CrossRefGoogle Scholar
  3. 3.
    Y.H. Ao, K.D. Wang, P.F. Wang, C. Wang, J. Hou, Appl. Catal. B: Environ. 194, 157 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Ma, X.L. Wang, Y.S. Jia, X.B. Chen, H.X. Han, C. Li, Chem. Rev. 114, 9987 (2014)CrossRefGoogle Scholar
  5. 5.
    A.V. Akimov, A.J. Neukirch, O.V. Prezhdo, Chem. Rev. 2013, 4496 (2013)CrossRefGoogle Scholar
  6. 6.
    M.L. Xie, H.K. Zhu, M.H. Fang, Z.H. Huang, Y.G. Liu, X.W. Wu, Appl. Surf. Sci. 435, 39 (2018)CrossRefGoogle Scholar
  7. 7.
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24, 229 (2012)CrossRefGoogle Scholar
  8. 8.
    S.Z. Ajabshir, M.S. Niasari, A. Sobhani, Z.Z. Ajabshir, J. Alloys Compd. 767, 1164 (2018)CrossRefGoogle Scholar
  9. 9.
    S.Z. Ajabshir, Z. Salehi, M.S. Niasari, Ceram. Int. 44, 3873 (2018)CrossRefGoogle Scholar
  10. 10.
    S.Z. Ajabshir, M.S. Morassaei, M.S. Niasari, J. Clean. Prod. 198, 11 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Wang, M.O. Tadé, Z.P. Shao, Prog. Mater Sci. 92, 33 (2018)CrossRefGoogle Scholar
  12. 12.
    S.G. Segura, E. Brillas, J. Photochem. Photobiol. C 31, 1 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S.S. Al-Deyab, Y. Lai, J. Mater. Chem. A 4, 6772 (2016)CrossRefGoogle Scholar
  14. 14.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  15. 15.
    F. Beshkar, S.Z. Ajabshir, S. Bagheri, M.S. Niasari, PLoS ONE 12(6), e0158549 (2017)CrossRefGoogle Scholar
  16. 16.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010)CrossRefGoogle Scholar
  17. 17.
    R. Li, J.X. Liu, F.F. Duo, C.M. Zhang, Y.W. Wang, Y.F. Wang, X.C. Zhang, C.M. Fan, Mater. Lett. 224, 5 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, Appl. Catal. A 555, 47 (2018)CrossRefGoogle Scholar
  19. 19.
    X.C. Meng, Z.S. Zhang, J. Mol. Catal. A: Chem. 423, 533 (2016)CrossRefGoogle Scholar
  20. 20.
    Y.C. Feng, L. Li, J.W. Li, J.F. Wang, L. Liu, J. Hazard. Mater. 192, 538 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Meng, Z. Zhang, J. Photochem. Photobiol. A Chem. 310, 33 (2015)CrossRefGoogle Scholar
  22. 22.
    C.S. Pan, Y.F. Zhu, J. Mater. Chem. 21, 4235 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Xu, C. Zhang, X. Shao, K. Wu, Y.F. Zhu, Adv. Funct. Mater. 16, 1599 (2006)CrossRefGoogle Scholar
  24. 24.
    W.Z. Fang, L. Zhou, B. Shen, Y. Zhou, Q.Y. Yi, M.Y. Xing, J.L. Zhang, Res. Chem. Intermed. 44, 4609 (2018)CrossRefGoogle Scholar
  25. 25.
    L.Y. Ding, R.J. Wei, H. Chen, J.C. Hu, J.L. Li, Appl. Catal. B 172–173, 91 (2015)Google Scholar
  26. 26.
    M.S. Niasari, M. Bazarganipour, F. Davar, J. Alloys Compd. 489, 530 (2010)CrossRefGoogle Scholar
  27. 27.
    M.S. Niasari, M. Bazarganipour, F. Davar, Inorgan. Chim. Acta 365, 61 (2011)CrossRefGoogle Scholar
  28. 28.
    P.J. Xue, H. Wu, Y. Lu, X.H. Zhu, J. Mater. Sci. Technol. 34, 914 (2018)CrossRefGoogle Scholar
  29. 29.
    Y.P. Yu, S. Wang, W. Li, Z.H. Chen, Powder Technol. 323, 203 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, D.B. Ji, P. Wang, Y.D. Yan, Y. Xue, H.B. Xu, Y. Liang, H.J. Luo, M.L. Zhang, W. Han, Chem. Eng. J. 349, 613 (2018)CrossRefGoogle Scholar
  31. 31.
    R.E.R. Hernandez, F.R. Marcos, R.H. Gonçalves, M.Á. Rodriguez, E. Véron, M. Allix, C. Bessada, J.F. Fernandez, Inorg. Chem. 54, 9896 (2015)CrossRefGoogle Scholar
  32. 32.
    O. Livitska, N. Strutynska, I. Zatovsky, N. Slobodyanik, E. Odinets, J. Cryst. Growth 434, 30 (2016)CrossRefGoogle Scholar
  33. 33.
    X.H. Guan, Q. Liu, G.H. Chen, C. Shang, J. Colloid Interface Sci. 289, 319 (2005)CrossRefGoogle Scholar
  34. 34.
    Z.P. Yao, F.Z. Jia, S.J. Tian, C.X. Li, Z.H. Jiang, X.F. Bai, A.C.S. Appl, Mater. Interface 2, 2617 (2010)CrossRefGoogle Scholar
  35. 35.
    M.A. Butler, J. Appl. Phys. 48, 1914 (1977)CrossRefGoogle Scholar
  36. 36.
    C.S. Pan, Y.F. Zhu, Environ. Sci. Technol. 44, 5570 (2010)CrossRefGoogle Scholar
  37. 37.
    K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Appl. Catal. B 68, 125 (2006)CrossRefGoogle Scholar
  38. 38.
    W.Z. Wang, X.W. Huang, S. Wu, Y.X. Zhou, L.J. Wang, H.L. Shi, Y.J. Liang, B. Zou, Appl. Catal. B 134–135, 293 (2013)CrossRefGoogle Scholar
  39. 39.
    X.Y. Yuan, C. Zhou, Y.R. Jin, Q.Y. Jing, Y.L. Yang, X. Shen, Q. Tang, Y.H. Mu, A.K. Du, J. Colloid Interface Sci. 468, 211 (2016)CrossRefGoogle Scholar
  40. 40.
    Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)CrossRefGoogle Scholar
  41. 41.
    X.J. Wen, C. Zhang, C.G. Niu, L. Zhang, G.M. Zeng, X.G. Zhang, Catal. Commun. 90, 51 (2017)CrossRefGoogle Scholar
  42. 42.
    C.M. Chou, Y.C. Chang, P.S. Lin, F.K. Liu, J. Photochem. Photobiol. A Chem. 347, 1 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  2. 2.College of Chemical EngineeringHebei Normal University of Science and TechnologyQinhuangdaoChina
  3. 3.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations