Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 2, pp 873–892 | Cite as

Construction, enhanced visible-light photocatalytic activity and application of multiple complementary Ag dots decorated onto Ag2MoO4/AZO hybrid nanocomposite

  • Ya-Nan Xue
  • Yi-Shuo Sun
  • Jin-Ku LiuEmail author
  • Yuan-Yuan Wang
  • Xiao-Gang Wang
  • Xiao-Hong YangEmail author
Article
  • 38 Downloads

Abstract

It is of urgency to develop novel and high-efficient visible-light photocatalysts to eliminate antibiotics and organic pollutants rapidly in sewage. Therefore, the silver molybdate/aluminum atoms-doped zinc oxide (Ag2MoO4/AZO) nanocomposite was prepared by in situ deposition, and then the Ag dots were decorated on this nanocomposite surface via photo-reduced reaction forming a multiple complementary Ag@Ag2MoO4/AZO hybrid nanocomposite. The photogenerated electrons of AZO transferred to Ag2MoO4 surface, which solved the optical instability of Ag2MoO4 material increasing the recyclability. The photocatalytic efficiency of Ag@Ag2MoO4/AZO nanocomposite still remained 90.0% after eight runs. Meanwhile, the Ag dots decorated on the Ag@Ag2MoO4/AZO nanocomposite surface decreased the band gap and broadened the visible-light absorption range, promoting the efficient separation of photogenerated carriers. Because of the synergistic complementary effect of Ag dots and AZO solid solution, the Ag@Ag2MoO4/AZO hybrid nanocomposite showed excellent photocatalytic activity on organic pollutants compared to AZO and Ag2MoO4 material (282.3% and 422.7% improvement, respectively). In addition, the gatifloxacin was completely degraded to CO2 and H2O within 40 min, indicating that the Ag@Ag2MoO4/AZO hybrid nanocomposite also has excellent application in the treatment of antibiotics.

Keywords

Nanocomposite Visible-light photocatalyst Ag2MoO4 Al doped zinc oxide 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21878090), the Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Grant SKL201605SIC) and the Major Project of Anhui Provincial Education Department (Grant KJ2017ZD48).

References

  1. 1.
    W.Z. Fang, Z. Li, B. Shen, Y. Zhou, Q.Y. Yi, M.X. Yang, Res. Chem. Intermed. 44, 4609 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Gan, Y. Wei, J. Xiong, G. Cheng, Chem. Eng. J. 349, 1 (2018)CrossRefGoogle Scholar
  3. 3.
    B.Y. Lv, Y.X. Cui, W. Tian, J. Li, B. Xie, Y. Fang, Ecotoxicol. Environ. Saf. 157, 169 (2018)CrossRefGoogle Scholar
  4. 4.
    O.A. Alsager, M.N. Alnajrani, H.A. Abuelizz, I.A. Aldaghmani, Ecotoxicol. Environ. Saf. 158, 114 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Munday, Chem. Res. Toxicol. 25, 47 (2012)CrossRefGoogle Scholar
  6. 6.
    M.Y. Nassar, E.I. Ali, E.S. Zakaria, RSC Adv. 7, 8034 (2017)CrossRefGoogle Scholar
  7. 7.
    M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, J. Mol. Liq. 225, 730 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Khataee, F.T. Mohamadi, T.S. Rad, B. Vahid, Ultrason. Sonochem. 40, 361 (2018)CrossRefGoogle Scholar
  9. 9.
    A.K. Ghattas, F. Fischer, A. Wick, T.A. Ternes, Water Res. 116, 268 (2017)CrossRefGoogle Scholar
  10. 10.
    J.D. Wang, F.R. Wang, J.K. Liu, X.H. Yang, X.H. Zhong, Res. Chem. Intermed. 42, 8285 (2016)CrossRefGoogle Scholar
  11. 11.
    Y.N. Xue, J.Y. Zhang, S. Tang, J.K. Liu, Y.B. Yue, X.H. Yang, New J. Chem. 42, 4308 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, M. Yan, X.Z. Yuan, M.Y. Si, L.B. Jiang, Z.B. Wu, H. Wang, G.M. Zeng, J. Colloid Interface Sci. 529, 11 (2018)CrossRefGoogle Scholar
  13. 13.
    W.W. Zhang, Y. Zhou, C.Y. Dong, B. Shen, M.Y. Xing, J.L. Zhang, Res. Chem. Intermed. 44, 4787 (2018)Google Scholar
  14. 14.
    D. Zhou, W.B. Li, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, Z.X. Yue, X. Yao, J. Am. Ceram. Soc. 97, 3597 (2014)CrossRefGoogle Scholar
  15. 15.
    Z.L. Wang, J.F. Zhang, J.L. Lv, K. Dai, C.H. Liang, Appl. Surf. Sci. 396, 791 (2017)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Bai, Y. Lu, J.K. Liu, J. Hazard. Mater. 307, 26 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Tang, A. Lu, L. Li, W.J. Zhou, Z.X. Xie, L.N. Zhang, Chem. Eng. J. 234, 124 (2013)CrossRefGoogle Scholar
  18. 18.
    A.K. Arora, R. Nithya, S. Misra, T. Yagi, J. Solid State Electr. 196, 391 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Rada, L. Bolundut, M. Pica, M. Zagral, S. Rada, E. Culea, J. Non-Cryst. Solids 365, 105 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Jin, Q. Liang, Y.R. Song, S. Xu, Z.Y. Li, Y. Chao, J. Alloys Compd. 726, 221 (2017)CrossRefGoogle Scholar
  21. 21.
    J.V. Kumar, R. Karthik, S.M. Chen, V. Muthuraj, C. Karuppiah, Sci. Rep. 6, 34149 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Pirhashemi, A. Habibi-Yangjeh, J. Mater. Sci. Technol. 34, 1891 (2018)CrossRefGoogle Scholar
  23. 23.
    X.Q. Liu, L. Cai, Appl. Surf. Sci. 445, 242 (2018)CrossRefGoogle Scholar
  24. 24.
    J.H. Qu, X. Wang, Y.G. Zhang, G.L. Yuan, Sol. Energy 170, 124 (2018)CrossRefGoogle Scholar
  25. 25.
    Q.Y. Li, S.Z. Chang, D. Wu, S.Y. Bao, C.Y. Zeng, M. Nasir, B.Z. Tian, J.L. Zhang, Res. Chem. Intermed. 44, 4651 (2018)CrossRefGoogle Scholar
  26. 26.
    Y.P. Zhu, R.L. Zhu, Y.F. Xi, T.Y. Xu, L.X. Yan, J.X. Zhu, G.Q. Zhu, H.P. He, Chem. Eng. J. 346, 567 (2018)CrossRefGoogle Scholar
  27. 27.
    X.L. Ren, H.L. Hou, Z.X. Liu, F.M. Gao, J.J. Zheng, L. Wang, W.G. Li, P.Z. Ying, W.Y. Yang, T. Wu, Small 12, 4007 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Zhao, F. Wang, H.Y. Chen, L.X. Zheng, L.X. Su, D.X. Zhao, X.S. Fang, Adv. Funct. Mater. 27, 1700264 (2017)CrossRefGoogle Scholar
  29. 29.
    X.Y. Zhang, J.K. Liu, J.D. Wang, X.H. Yang, Ind. Eng. Chem. Res. 54, 1766 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Raji, K.S. Sibi, K.G. Gopchandran, Appl. Surf. Sci. 427, 863 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Yousefi, J. Beheshtian, S.M. Seyed-Talebi, H.R. Azimi, F. Jamali, Chem. Asian J. 13, 194 (2018)CrossRefGoogle Scholar
  32. 32.
    U. Alam, A. Khan, W. Raza, A. Khan, D. Bahnemann, M. Muneer, Catal. Today 284, 169 (2016)CrossRefGoogle Scholar
  33. 33.
    Y.F. Cheng, W.L. Jiao, Q.Q. Li, Y. Zhang, S.S. Li, D.D. Li, R.C. Che, J. Colloid Interface Sci. 509, 58 (2018)CrossRefGoogle Scholar
  34. 34.
    Y.J. Deng, Y. Lu, J.K. Liu, X.H. Yang, Eur. J. Inorg. Chem. 2015, 3708 (2015)CrossRefGoogle Scholar
  35. 35.
    M.Y. Nassar, E.A. El-Moety, M.F. El-Shahat, RSC Adv. 7, 43798 (2017)CrossRefGoogle Scholar
  36. 36.
    J.C. Wang, H.H. Lou, Z.H. Xu, C.X. Cui, Z.J. Li, K. Jiang, Y.P. Zhang, L.B. Qu, W.N. Shi, J. Hazard. Mater. 360, 356 (2018)CrossRefGoogle Scholar
  37. 37.
    H.J. Liang, Z.C. Jia, H.C. Zhang, X.B. Wang, J.J. Wang, Appl. Surf. Sci. 422, 1 (2017)CrossRefGoogle Scholar
  38. 38.
    S.P. Patil, B. Bethi, G.H. Sonawane, V.S. Shrivastava, S. Sonawane, J. Ind. Eng. Chem. 34, 356 (2016)CrossRefGoogle Scholar
  39. 39.
    C.L. Yu, Z. Wu, R.Y. Liu, D.D. Dionysiou, K. Yang, C.Y. Wang, H. Liu, Appl. Catal. B Environ. 209, 1 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Habibi-Yangjeh, M. Shakofteh-Gohari, Sep. Purif. Technol. 184, 334 (2017)CrossRefGoogle Scholar
  41. 41.
    A.A. Alqadaml, M. Naushad, M.A. Abdalla, T. Ahamad, Z.A. Alothman, S.M. Alshehri, A.A. Ghfar, J. Clean. Prod. 156, 426 (2017)CrossRefGoogle Scholar
  42. 42.
    M.Y. Nassar, K. Mai, RSC Adv. 6, 79688 (2016)CrossRefGoogle Scholar
  43. 43.
    C.M. Manna, M.Y. Nassar, D. Tofan, K. Chakarawet, C.C. Cummins, Dalton Trans. 43, 1509 (2014)CrossRefGoogle Scholar
  44. 44.
    M.Y. Nassar, M.M. Moustafa, M.M. Taha, RSC Adv. 6, 42180 (2016)CrossRefGoogle Scholar
  45. 45.
    J.J. Wang, L. Tang, G.M. Zeng, Y.C. Deng, Y.N. Liu, L.L. Wang, Y.Y. Zhou, Z. Guo, J.J. Wang, C. Zhang, Appl. Catal. B Environ. 209, 285 (2017)CrossRefGoogle Scholar
  46. 46.
    X.H. Ji, G.Q. Kan, X.Z. Jiang, B. Sun, M.F. Zhu, Y.S. Sun, J. Colloid Interface Sci. 523, 98 (2018)CrossRefGoogle Scholar
  47. 47.
    P.Y. Zhang, T. Song, T.T. Wang, H.P. Zeng, Appl. Catal. B Environ. 206, 328 (2017)CrossRefGoogle Scholar
  48. 48.
    H. Wu, J.X. Sun, D.X. Qi, C.S. Zhou, H.M. Yang, Fuel 230, 218 (2018)CrossRefGoogle Scholar
  49. 49.
    Z. Li, Q.W. Zhang, X.Z. Liu, L. Wu, H.M. Hu, Y. Zhao, J. Mater. Sci. 53, 12795 (2018)CrossRefGoogle Scholar
  50. 50.
    M. Behrens, G. Lolli, N. Muratova, I. Kasatkin, M. Hävecker, R.N. d’Alnoncourt, O. Storcheva, K. Köhler, M. Muhler, R. Schlögl, Phys. Chem. Chem. Phys. 15, 1374 (2013)CrossRefGoogle Scholar
  51. 51.
    Z.Q. Li, X.T. Chen, Z.L. Xue, Sci. China Chem. 56, 443 (2013)CrossRefGoogle Scholar
  52. 52.
    J. Li, F. Liu, Y.R. Li, New J. Chem. 42, 12054 (2018)CrossRefGoogle Scholar
  53. 53.
    R. Dhanabal, S. Velmathi, A.C. Bose, Catal. Sci. Technol. 6, 8449 (2016)CrossRefGoogle Scholar
  54. 54.
    J.Y. Zhang, Y. Lu, J.K. Liu, H. Jiang, RSC Adv. 6, 94771 (2016)CrossRefGoogle Scholar
  55. 55.
    W.R. Cao, Y.T. An, L.F. Chen, Z.W. Qi, J. Alloys Compd. 701, 350 (2017)CrossRefGoogle Scholar
  56. 56.
    X.Y. Yuan, F.R. Wang, J.K. Liu, X.H. Yang, Cryst. Growth Des. 17, 4254 (2017)CrossRefGoogle Scholar
  57. 57.
    Y.Y. Bai, F.R. Wang, J.K. Liu, Ind. Eng. Chem. Res. 55, 9873 (2016)CrossRefGoogle Scholar
  58. 58.
    W. Zhao, B.L. Dai, F.X. Zhu, X.Y. Tu, J.M. Xu, L.L. Zhang, S.Y. Li, D.Y.C. Leung, S. Cheng, Appl. Catal. B Environ. 229, 171 (2018)CrossRefGoogle Scholar
  59. 59.
    Y.C. Xie, Y.Z. Dai, X.Z. Yuan, L.B. Jiang, L.L. Zhou, Z.B. Wu, J. Zhang, H. Wang, T. Xiong, J. Colloid Interface Sci. 530, 493 (2018)CrossRefGoogle Scholar
  60. 60.
    L. Ge, C. Halsall, C.E. Chen, P. Zhang, Q.Q. Dong, Z.W. Yao, Sci. Total Environ. 633, 1192 (2018)CrossRefGoogle Scholar
  61. 61.
    J.J. Chen, L.J. Wang, G.J. Xu, X. Wang, R.S. Zhao, Molecules 23, 937 (2018)CrossRefGoogle Scholar
  62. 62.
    Y.M. Yu, J.F. Geng, H. Li, R.Y. Bao, H.Y. Chen, W.Z. Wang, J.X. Xia, W.Y. Wong, Sol. Energ. Sol. C 168, 91 (2017)CrossRefGoogle Scholar
  63. 63.
    G.L. Chen, X. Liu, D. Tartakevosky, M. Li, Ecotoxicol. Environ. Saf. 133, 18 (2016)CrossRefGoogle Scholar
  64. 64.
    L.L. Yao, Y.X. Wang, Y.M. Tong, Y.G. Li, Y.Q. Gan, W. Guo, C.J. Dong, Y.H. Duan, K. Zhao, Ecotoxicol. Environ. Saf. 135, 236 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Department of ChemistryTongji UniversityShanghaiPeople’s Republic of China
  3. 3.Department of ChemistryChizhou UniversityChizhouPeople’s Republic of China

Personalised recommendations