Research on Chemical Intermediates

, Volume 45, Issue 2, pp 863–872 | Cite as

Photophysical behavior of a novel 4-aza-indole derivative in different solvents: reverse solvatochromism

  • Ebru BozkurtEmail author
  • Sengul Dilem Dogan


The photophysical properties of a new 4-aza-indole derivative [ethyl 1-((2-(2-ethoxy-2-oxoethyl)pyridin-3-yl)carbamoyl)-2-hydroxy-1H-pyrrolo-[3,2-b]pyridine-3-carboxylate, 12] were determined in different solvents. Compound 12 exhibited an absorbance peak at 340–360 nm with high fluorescence intensity in the wavelength range from 405 to 417 nm in all solvents except N,N-dimethylformamide (DMF). Compound 12 exhibited reverse solvatochromism behavior depending on the solvent polarity. Furthermore, compound 12 showed very high quantum yield in all solvents independent of their polarity. The results suggest that this novel dye could be used for many applications, e.g., as a labeling agent and in bio- or analytical sensors and/or optoelectronic devices.


4-Aza-indole Absorption Fluorescence Solvent Reverse solvatochromism 


  1. 1.
    P. Talukder, S. Chen, P.M. Arce, S.M. Hecht, Org. Lett. 16, 2 (2014)CrossRefGoogle Scholar
  2. 2.
    S.M. Twine, L. Murphy, R.S. Phillips, P. Callis, M.T. Cash, A.G. Szabo, J. Phys. Chem. B 107, 2 (2003)CrossRefGoogle Scholar
  3. 3.
    J. He, J.S. Chen, Mater. Sci. Forum 914, 182 (2018)CrossRefGoogle Scholar
  4. 4.
    A.A. Bhatti, M. Oguz, S. Memon, M. Yilmaz, J. Fluoresc. 27, 1 (2017)CrossRefGoogle Scholar
  5. 5.
    E. Bozkurt, H.I. Gul, E. Mete, J. Photochem. Photobiol., A 352, 35 (2018)CrossRefGoogle Scholar
  6. 6.
    A.M. Şenol, Y. Onganer, K. Meral, Sensors Actuators B: Chem. 239, 343 (2017)CrossRefGoogle Scholar
  7. 7.
    A.M. Brouwer, Pure Appl. Chem. 83, 12 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Jana, B. Das, S.K. Mandal, S. Mabhai, A.R. Khuda-Bukhsh, S. Dey, New J. Chem. 40, 7 (2016)Google Scholar
  9. 9.
    S.D. Doğan, E. Demirpolat, M.B. Yerer-Aycan, M. Balci, Tetrahedron 71, 2 (2015)Google Scholar
  10. 10.
    B. Valeur, M.N. Berberan-Santos, Molecular fluorescence: principles and applications (Wiley, New York, 2012)CrossRefGoogle Scholar
  11. 11.
    P.A. Gale, C. Caltagirone, Coord. Chem. Rev. 354, 98 (2018)CrossRefGoogle Scholar
  12. 12.
    P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, S. Monti, Phys. Chem. Chem. Phys. 15, 8 (2013)CrossRefGoogle Scholar
  13. 13.
    M.S. Mehata, A.K. Singh, R.K. Sinha, J. Mol. Liq. 231, 39 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Reichardt, Chem. Rev. 94, 8 (1994)CrossRefGoogle Scholar
  15. 15.
    D. Sahoo, P. Bhattacharya, S. Chakravorti, J. Phys. Chem. B 115, 37 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Wang, J. Fan, X. Qiao, X. Peng, B. Dai, B. Wang, S. Sun, L. Zhang, Y. Zhang, J. Photochem. Photobiol., A 210, 2 (2010)Google Scholar
  17. 17.
    A.M. Asiri, T.R. Sobahi, O.I. Osman, S.A. Khan, J. Mol. Struct. 1128, 636 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Liu, Z. Luo, S. Si, X. Zhou, C. Pan, L. Wang, Dyes Pigm. 41, 142 (2017)Google Scholar
  19. 19.
    E. Krystkowiak, K. Dobek, A. Maciejewski, J. Photochem. Photobiol., A 184, 3 (2006)CrossRefGoogle Scholar
  20. 20.
    N. Yosuke, K. Susumu, K. Genichi, Chem. A: Eur. J. 19, 30 (2013)Google Scholar
  21. 21.
    C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry (Wiley, New York, 2011)Google Scholar
  22. 22.
    C.E. De Melo, L.G. Nandi, M. Domínguez, M.C. Rezende, V.G. Machado, J. Phys. Org. Chem. 28, 4 (2015)Google Scholar
  23. 23.
    R.I. Stock, L.G. Nandi, C.R. Nicoleti, A.D. Schramm, S.L. Meller, R.S. Heying, D.F. Coimbra, K.F. Andriani, G.F. Caramori, A.J. Bortoluzzi, J. Org. Chem. 80, 16 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Program of Occupational Health and Safety, Erzurum Vocational Training SchoolAtaturk UniversityErzurumTurkey
  2. 2.Department of Pharmaceutical Basic Sciences, Faculty of PharmacyErciyes UniversityKayseriTurkey

Personalised recommendations