Research on Chemical Intermediates

, Volume 45, Issue 2, pp 845–862 | Cite as

Structure–property relationships of novel fluorinated polycarbonate polyurethane films with high transparency and thermal stability

  • Yiliang Wang
  • Jiemin Yi
  • Xiaohong PengEmail author
  • Xiaofeng Ma
  • Shuangshuang Peng


Novel polycarbonate diol (PCDL) was synthesized using dimethyl carbonate, 1,5-pentanediol (1,5-PD), 1,6-hexanediol (1,6-HD) and 1,4-cyclohexanedimethanol (1,4-CD) by a two-step method. Fluorinated thermoplastic polycarbonate polyurethanes (FPCUs) have been synthesized with novel PCDL as the soft segment and 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate and compound chain extenders [1,4-butanediol (BDO), 1,2-propanediol (PG) and 2,2-bis (4-hydroxyphenyl) hexafluoropropane (BPAF)] as the hard segment. A series of FPCU films was prepared and investigated to elucidate the effect of the different chain extenders on the structure and properties. Morphological, optical performance, thermostability and mechanical properties of FPCU films have been studied by Fourier transform infrared (FTIR) spectrometry, wide-angle X-ray diffraction (WXRD), atomic force microscopy (AFM), UV–visible (UV–Vis) spectrometry, thermogravimetric analysis (TGA) and mechanical tests. As the increase of the fluorine chain content, the increase of immiscibility between soft and hard microdomains has been obtained from the FTIR, AFM and WXRD measurements. UV–Vis tests showed that the transmittance of FPCU films decreased with the increase of crystallization, which resulted in superior mechanical properties such as higher tensile stress and tear strength. TGA tests indicated that the thermal stability of FPCU films was improved significantly with the introduction of BPAF.


Polycarbonate diol Fluorinated polycarbonate polyurethanes Transparency Thermal stability Microphase separation 



This work is financially supported by the University-Industry Cooperation Project of Dongguan (Grant No. 2013509117202).


  1. 1.
    T. Takahashi, N. Hayashi, S. Hayashi, J. Appl. Polym. Sci. 60, 1061 (1996)CrossRefGoogle Scholar
  2. 2.
    J.W. Cho, J.W. Kim, Y.C. Jung, N.S. Goo, Macromol. Rapid Commun. 26, 412 (2005)CrossRefGoogle Scholar
  3. 3.
    S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P.V. Braun, Adv. Mater. 18, 997 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Ghosh, M.W. Urban, Science 323, 1458 (2009)CrossRefGoogle Scholar
  5. 5.
    W.M. Huang, B. Yang, Y. Zhao, Z. Ding, J. Mater. Chem. 20, 3367 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Olad, F. Rezvani, R. Nosrati, Res. Chem. Intermediat. 44, 1711 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Hu, Z. Chen, Y. He, H. Huang, X.Y. Zhang, Res. Chem. Intermed. 43, 2799 (2017)CrossRefGoogle Scholar
  8. 8.
    M.W. Terban, R. Dabbous, A.D. Debellis, E. Pöselt, S.J.L. Billinge, Macromolecules 49, 7350 (2016)CrossRefGoogle Scholar
  9. 9.
    R.R. Aitken, G.M.F. Jeffs, Polymer 18, 197 (1977)CrossRefGoogle Scholar
  10. 10.
    B.F. D’Arlas, L. Rueda, K.D.L. Caba, I. Mondragon, A. Eceiza, A. Polym. Eng. Sci. 48, 519 (2008)CrossRefGoogle Scholar
  11. 11.
    A.L. Chang, R.M. Briber, E.L. Thomas, R.J. Zdrahala, F.E. Critchfield, Polymer 23, 1060 (1982)CrossRefGoogle Scholar
  12. 12.
    H.D. Kim, J.H. Huh, E.Y. Kim, C.C. Park, J. Appl. Polym. Sci. 69, 1349 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Eceiza, M.D. Martin, K.D.L. Caba, G. Kortaberria, N. Gabilondo, M.A. Corcuera, I. Mondragon, Polym. Eng. Sci. 48, 297 (2008)CrossRefGoogle Scholar
  14. 14.
    D.K. Lee, H.B. Tsai, R.S. Tsai, P.H. Chen, Polym. Eng. Sci. 47, 695 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Kultys, M. Rogulska, S. Pikus, K. Skrzypiec, Eur. Polym. J. 45, 2629 (2009)CrossRefGoogle Scholar
  16. 16.
    L.W. Lan, Polymer Physics (Northwest Polytechnic University Press, Shanxi, 1985), p. 25Google Scholar
  17. 17.
    H.Q. Xie, Z.H. Liu, H. Liu, J.S. Guo, Polymer 39, 2393 (1998)CrossRefGoogle Scholar
  18. 18.
    J.D. Hood, W.W. Blount, W.T. Sade, J. Coat. Technol. 58, 49 (1986)Google Scholar
  19. 19.
    V. Costa, A. Nohales, P. Félix, C. Guillem, D. Gutiérrez, J. Appl. Polym. Sci. 132, 4170 (2015)CrossRefGoogle Scholar
  20. 20.
    V. García-Pacios, V. Costa, M. Colera, J.M. Martín-Martínez, Int. J. Adhes. Adhes. 30, 456 (2010)CrossRefGoogle Scholar
  21. 21.
    T.M. Chapman, K.G. Marra, Macromolecules 29, 7553 (1995)Google Scholar
  22. 22.
    P. Liu, L. Ye, Y. Liu, F. Nie, Polym. Bull. 66, 503 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Claudio, T. Tania, S. Massimo, S. Giovanni, A. Giuseppe, J. Appl. Polym. Sci. 59, 311 (1996)CrossRefGoogle Scholar
  24. 24.
    C. Tonelli, G. Ajroldi, J. Appl. Polym. Sci. 87, 2279 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Castellano, C. Tonelli, A. Turturro, G. Simeone, J. Mater. Sci. 49, 2519 (2014)CrossRefGoogle Scholar
  26. 26.
    C.C. Chen, W.J. Liang, P.L. Kuo, J. Polym. Sci. Polym. Chem. 40, 486 (2002)CrossRefGoogle Scholar
  27. 27.
    X.F. Yang, J. Li, S.G. Croll, D.E. Tallman, G.P. Bierwagen, Polym. Degrad. Stab. 80, 51 (2003)CrossRefGoogle Scholar
  28. 28.
    T. Takakura, M. Kato, M. Yamabe, Macromol. Chem. Phys. 191, 625 (1990)CrossRefGoogle Scholar
  29. 29.
    C. Tonelli, T. Trombetta, M. Scicchitano, G. Castiglioni, J. Appl. Polym. Sci. 57, 1031 (1995)CrossRefGoogle Scholar
  30. 30.
    L.F. Wang, Polymer 48, 894 (2007)CrossRefGoogle Scholar
  31. 31.
    Y.L. Wang, L.J. Yang, X.H. Peng, Z.J. Jin, RSC Adv. 7, 35181 (2017)CrossRefGoogle Scholar
  32. 32.
    R.L. Shriner, C.K.F. Hermann, T.C. Morrill, D.Y. Curtin, R.C. Fuson, The Systematic Identification of Organic Compounds, 8th edn. (Wiley, New York, 2004)Google Scholar
  33. 33.
    I.M. Pereira, V. Gomide, R.L. Oréfice, M.F. Leite, A.A.C. Zonari, A.M. Goes, Polímeros 20, 280 (2010)CrossRefGoogle Scholar
  34. 34.
    R. Bonart, L. Morbitzer, G. Hentze, J. Macromol. Sci. B 3, 337 (1969)CrossRefGoogle Scholar
  35. 35.
    G. Trovati, E.A. Sanches, S.C. Neto, Y.P. Mascarenhas, G.O. Chieeerice, J. Appl. Polym. Sci. 115, 263 (2010)CrossRefGoogle Scholar
  36. 36.
    V. Costa, A. Nohales, P. Félix, C. Guillem, D. Gutiérrez, C.M. Gómez, J. Appl. Polym. Sci. 132, 41704 (2015)CrossRefGoogle Scholar
  37. 37.
    J.R. Zhang, W.P. Tu, Z. Dai, Prog. Org. Coat. 75, 579 (2012)CrossRefGoogle Scholar
  38. 38.
    H.L. Chen, F. Zhang, W. Chen, Q.F. Sun, W. Dong, Chem. Prop. Polym. Mater. 5, 26 (2005)Google Scholar
  39. 39.
    P.H. Chen, Y.F. Yang, D.K. Lee, Y.F. Lin, H.H. Wang, H.B. Tsai, R.S. Tsa, Adv. Polym. Technol. 26, 33 (2007)CrossRefGoogle Scholar
  40. 40.
    S. Kumari, A.K. Mishra, A.V.R. Krishna, K.V.S.N. Raju, Prog. Org. Coat. 60, 54 (2007)CrossRefGoogle Scholar
  41. 41.
    J. Mou, X.R. Li, H.H. Wang, G.Q. Fei, Q. Liu, Starch 64, 826 (2012)CrossRefGoogle Scholar
  42. 42.
    Y.R. Luo, Handbook of Chemical Bond Dissociation Energies Data (Science Press, Beijing, 2005)Google Scholar
  43. 43.
    M. Rogulska, A. Kultys, J. Therm. Anal. Calorim. 126, 225 (2016)CrossRefGoogle Scholar
  44. 44.
    M. Spirkova, J. Pavlicevic, A. Strachota, R. Poreba, O. Bera, L. Kapralkova, J. Baldrian, M. Slouf, N. Lazio, B. Simendic, J. Eur. Polym. J. 47, 959 (2011)CrossRefGoogle Scholar
  45. 45.
    T.L. Wang, F. Huang, J. Polymer. 41, 5219 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations