Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 2, pp 833–843 | Cite as

The reaction mechanism of a M (M = Mn, Fe, Co and Ni) atom inserted into a Fe8O12 cage

  • Zhi LiEmail author
  • Zhen Zhao
Article
  • 42 Downloads

Abstract

The reaction process of a M (M = Mn, Fe, Co and Ni) atom associated and then interpolated into a Fe8O12 cage is calculated by using a PBE exchange–correlation functional. The results reveal that Mn@Fe8O12 core@shell cluster possesses lower symmetry than the other MFe8O12 (M = Fe, Co and Ni) core@shell clusters. The MFe8O12 cages are more stable than the Fe8O12 cage and the corresponding M@Fe8O12 core@shell clusters. The M@Fe8O12 core@shell clusters are difficult to form via higher energy barriers. The M atom association ability of the Fe8O12 cage is as follows: Fe > Co > Ni > Mn. All the M association and interpolation Fe8O12 clusters have higher chemical activity.

Keywords

Fe8O12 cage Quantum chemical calculation Reaction path Electronic distribution Spin polarization 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the Key Fund Project of the National Science Foundation, People’s Republic of China (Grant No. 51634004). It is also supported by the Doctoral Scientific Research Foundation of the Natural Science Foundation Guidance Plan of Liaoning Province (Grant No. 20180551213), the Natural Science Foundation Guidance Plan of Liaoning Province (Grant No. 201602399), Key Laboratory of Chemical Metallurgy Engineering Liaoning Province, University of Science and Technology LiaoNing (Grant No. USTLKFSY201711) and the Doctoral Scientific Research Foundation of Anshan Normal University (Grant No. 2015b04).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    H.T. Hai, H. Kura, M. Takahashi, T. Ogawa, J. Appl. Phys. 107, 09E301 (2010)CrossRefGoogle Scholar
  2. 2.
    D. Odkhuu, P. Taivansaikhan, W.S. Yun, S.C. Hong, J. Appl. Phys. 115, 17A916 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Vaez-zadeh, A. Mohammadi, JOM 66, 1345 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Sun, H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002)CrossRefGoogle Scholar
  5. 5.
    J.N. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 3, 891 (2004)CrossRefGoogle Scholar
  6. 6.
    Q. He, T. Yuan, J. Zhu, Z. Luo, N. Haldolaarachchige, L. Sun, A. Khasanov, Y. Li, D.P. Young, S. Wei, Z. Guo, Polymer 53, 3642 (2012)CrossRefGoogle Scholar
  7. 7.
    R. Cabreira-Gomes, F.G. Silva, R. Aquino, P. Bonville, F.A. Tourinho, R. Perzynski, J. Depeyrot, J. Magn. Magn. Mater. 368, 409 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.H. Hou, Y.L. Huang, S.J. Hou, S.C. Ma, Z.W. Liu, Y.F. Ouyang, J. Magn. Magn. Mater. 421, 300 (2017)CrossRefGoogle Scholar
  9. 9.
    Q.-C. Sun, H. Sims, D. Mazumdar, J.X. Ma, B.S. Holinsworth, K.R. O’Neal, G. Kim, W.H. Butler, A. Gupta, J.L. Musfeldt, Phys. Rev. B. 86, 205106 (2012)CrossRefGoogle Scholar
  10. 10.
    R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Appl. Phys. A 106, 207 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Li, C. Cai, C. Zhao, Y. Gu, Mod. Phys. Lett. B. 30, 1650239 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Daffé, M. Sikora, M. Rovezzi, N. Bouldi, V. Gavrilov, S. Neveu, F. Choueikani, P. Ohresser, V. Dupuis, D. Taverna, A. Gloter, M. Arrio, P. Sainctavit, A. Juhin, Adv. Mater. Interfaces 4, 1700599 (2017)CrossRefGoogle Scholar
  13. 13.
    Z. Li, Z. Zhao, S. Li, Q. Wang, Comput. Mater. Sci. 110, 340 (2015)CrossRefGoogle Scholar
  14. 14.
    B. Delley, J. Chem. Phys. 92, 508 (1990)CrossRefGoogle Scholar
  15. 15.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Li, C. Cai, C. Zhao, Y. Gu, Mod. Phys. Lett. B. 30, 1650239 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Logemann, G.A. de Wijs, M.I. Katsnelson, A. Kirilyuk, Phys. Rev. B. 92, 144427 (2015)CrossRefGoogle Scholar
  18. 18.
    Z. Zhao, Z. Li, Q. Wang, D. Wang, C. Wu, Z. Zhou, Comput. Theor. Chem. 1095, 9 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Li, Z. Zhou, H. Wang, S. Li, Z. Zhao, J. Cryst. Growth 449, 22 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Li, Z. Zhao, Phase Transit. 91, 426 (2018)CrossRefGoogle Scholar
  21. 21.
    R.S. Mülliken, J. Chem. Phys. 23, 1841 (1955)CrossRefGoogle Scholar
  22. 22.
    Z. Li, Z. Zhao, J. Mater. Sci. 52, 3301 (2017)CrossRefGoogle Scholar
  23. 23.
    Z. Li, Z. Zhao, S. Li, Q. Wang, Solid State Commun. 221, 5 (2015)CrossRefGoogle Scholar
  24. 24.
    X.L. Ding, W. Xue, Y.P. Ma, Z.C. Wang, S.G. He, J. Chem. Phys. 130, 014303 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Fan, L.-S. Wang, J. Chem. Phys. 102, 8714 (1995)CrossRefGoogle Scholar
  26. 26.
    M. Ju, J. Lv, X. Kuang, L. Ding, C. Lu, J. Wang, Y. Jin, G. Maroulis, RSC Adv. 5, 6560 (2015)CrossRefGoogle Scholar
  27. 27.
    Z. Li, Z. Zhou, Z. Zhao, Q. Wang, Int. J. Mod. Phys. B. 32, 1850187 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Aguado, J.M. Lopez, J. Phys. Chem. B 104, 8398 (2001)CrossRefGoogle Scholar
  29. 29.
    Z. Li, Z. Zhao, Mater. Chem. Phys. 187, 54 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Wang, H. Qin, Y. Chen, J. Hu, J. Phys. Chem. C 118, 28548 (2014)CrossRefGoogle Scholar
  31. 31.
    G.D. Price, S.L. Price, J.K. Burdett, Phys. Chem. Miner. 8, 69 (1982)CrossRefGoogle Scholar
  32. 32.
    V. Musat, O. Potecasu, R. Belea, P. Alexandru, Mater. Sci. Eng. B 167, 85 (2010)CrossRefGoogle Scholar
  33. 33.
    M.F. Gillies, R. Coehoorn, J.B.A. van Zon, D. Alders, J. Appl. Phys. 83, 6855 (1998)CrossRefGoogle Scholar
  34. 34.
    G.S. Shahane, K.V. Zipare, S.S. Bandgar, V.L. Mathe, J. Mater. Sci.: Mater. Electron. 28, 4146 (2017)Google Scholar
  35. 35.
    Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 134, 10182 (2012)CrossRefGoogle Scholar
  36. 36.
    R.C. Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanPeople’s Republic of China
  2. 2.School of Chemistry and Life ScienceAnshan Normal UniversityAnshanPeople’s Republic of China

Personalised recommendations