Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 2, pp 815–832 | Cite as

Pd–Co alloy as an efficient recyclable catalyst for the reduction of hazardous 4-nitrophenol

  • T. A. Revathy
  • T. Sivaranjani
  • A. A. Boopathi
  • Srinivasan Sampath
  • V. Narayanan
  • A. StephenEmail author
Article
  • 67 Downloads

Abstract

Palladium–Cobalt (Pd–Co) alloys with different atomic ratios were synthesized successfully by borohydride-assisted chemical reduction method. Pd–Co alloys were characterized to study their physical and chemical properties. Further, the catalytic behavior of the synthesized alloys and effect of cobalt inclusion into alloy for the catalytic behavior was studied using reduction of 4-nitrophenol (4-NP). The reduction of 4-NP into 4-aminophenol by sodium borohydride is one of the eminent model reactions to study catalytic behavior as it enables assessing the catalyst from the kinetic parameters calculated from the real-time spectroscopic monitoring of an aqueous solution. Pd–Co alloys show good catalytic activity towards the reduction of 4-NP and their rate constants were calculated. The catalytic studies reveal that reduction reaction catalyzed by prepared Pd–Co alloys follow the pseudo-first-order kinetics. Among them, Pd26Co74 catalyzed the reduction reaction with the minimum time of 7 min having a rate constant of 6.65 ms−1. The turn over frequency (TOF) for the corresponding alloy was calculated and found to be 26 h−1.

Graphical abstract

Keywords

Pd–Co alloy Chemical reduction method Catalysis Nitrophenol 

Notes

Acknowledgements

One of the authors, T. A. Revathy, acknowledges UGC-UPE-Phase II for the financial assistance as a fellowship. Authors thank Dr. J. Senthil Selvan, Department of Nuclear physics, University of Madras, for access to UV–Vis absorption spectroscopy and K. C. Dharani Balaji, IIT Madras, is also acknowledged for HRSEM measurements.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    S. Wang, R. Su, S. Nie, M. Sun, J. Zhang, D. Wu, N. Moustaid-Moussa, J. Nutr. Biochem. 25, 363 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Duygu, Y. Shimeng, H.S.P. Wong, Nanotechnology 24, 382001 (2013)CrossRefGoogle Scholar
  3. 3.
    X. Qu, P.J.J. Alvarez, Q. Li, Water Res. 47, 3931 (2013)CrossRefGoogle Scholar
  4. 4.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003)CrossRefGoogle Scholar
  5. 5.
    N.N. Nassar, A. Hassan, P. Pereira-Almao, Energy Fuels 25, 1566 (2011)CrossRefGoogle Scholar
  6. 6.
    X.-L. Chen, B.-R. Ai, Y. Dong, X.-M. Zhang, J.-Y. Wang, Tetrahedron Lett. 58, 3646 (2017)CrossRefGoogle Scholar
  7. 7.
    T.B. Devi, M. Ahmaruzzaman, Mater. Today Proc. 5, 2098 (2018)CrossRefGoogle Scholar
  8. 8.
    P. Zhou, Z. Zhang, L. Jiang, C. Yu, K. Lv, J. Sun, S. Wang, Appl. Catal. B 210, 522 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Singh, S. Rani, A. Arora, Sanchita, H. Duggal, D. Mehta, Mol. Catal. 431, 15 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Nandi, S. Siwal, M. Choudhary, K. Mallick, Appl. Catal. A 523, 31 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Cisneros, P. Serna, A. Corma, Chin. J. Catal. 37, 1756 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Ikehata, M. Gamal El-Din, S.A. Snyder, Ozone Sci. Eng. 30, 21 (2008)CrossRefGoogle Scholar
  13. 13.
    Prateek, C. Thakur, C. Srivastava Vimal, D. Mall Indra, Int. J. Chem. Reactor Eng. 11, 595 (2013)Google Scholar
  14. 14.
    W. Shen, Y. Qu, X. Pei, S. Li, S. You, J. Wang, Z. Zhang, J. Zhou, J. Hazard. Mater. 321, 299 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Jaerger, A. dos Santos, A. N. Fernandes, C. A. P. Almeida, Water Air Soil Pollut. 226, 236 (2015)CrossRefGoogle Scholar
  16. 16.
    L.L. Bo, Y.B. Zhang, X. Quan, B. Zhao, J. Hazard. Mater. 153, 1201 (2008)CrossRefGoogle Scholar
  17. 17.
    M.A. Oturan, J. Peiroten, P. Chartrin, A.J. Acher, Environ. Sci. Technol. 34, 3474 (2000)CrossRefGoogle Scholar
  18. 18.
    P. Cañizares, C. Sáez, J. Lobato, M.A. Rodrigo, Ind. Eng. Chem. Res. 43, 1944 (2004)CrossRefGoogle Scholar
  19. 19.
    M.S. Dieckmann, K.A. Gray, Water Res. 30, 1169 (1996)CrossRefGoogle Scholar
  20. 20.
    M.S. Bloomfield, Talanta 58, 1301 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Roy, B. Debnath, R. Sahoo, T. Aditya, T. Pal, J. Colloid Interface Sci. 493, 288 (2017)CrossRefGoogle Scholar
  22. 22.
    J.O. Otutu, D. Okoro, E.K. Ossai, J. Appl. Sci. 8, 334 (2008)CrossRefGoogle Scholar
  23. 23.
    H.M. Pinheiro, E. Touraud, O. Thomas, Dyes Pigm. 61, 121 (2004)CrossRefGoogle Scholar
  24. 24.
    N.A. Penner, P.N. Nesterenko, Analyst 125, 1249 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Fedorczyk, J. Ratajczak, O. Kuzmych, M. Skompska, J. Solid State Electrochem. 19, 2849 (2015)CrossRefGoogle Scholar
  26. 26.
    K. Suwannarat, K. Thongthai, S. Ananta, L. Srisombat, Colloids Surf. A 540, 73 (2018)CrossRefGoogle Scholar
  27. 27.
    L. Srisombat, J. Nonkumwong, K. Suwannarat, B. Kuntalue, S. Ananta, Colloids Surf. A 512, 17 (2017)CrossRefGoogle Scholar
  28. 28.
    P. Xu, C. Cen, N. Chen, H. Lin, Q. Wang, N. Xu, J. Tang, Z. Teng, J. Colloid Interface Sci. 526, 194 (2018)CrossRefGoogle Scholar
  29. 29.
    H. Guan, C. Chao, Y. Lu, H. Shang, Y. Zhao, S. Yuan, B. Zhang, J. Chem. Sci. 128, 1355 (2016)CrossRefGoogle Scholar
  30. 30.
    B.P. Chaplin, M. Reinhard, W.F. Schneider, C. Schüth, J.R. Shapley, T.J. Strathmann, C.J. Werth, Environ. Sci. Technol. 46, 3655 (2012)CrossRefGoogle Scholar
  31. 31.
    Á. Molnár, Chem. Rev. 111, 2251 (2011)CrossRefGoogle Scholar
  32. 32.
    C.J. Calderón Gómez, R. Moliner, J.M. Lázaro, Catalysts 6, 130 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Dhanavel, N. Manivannan, N. Mathivanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 257, 32 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Dhanavel, E.A.K. Nivethaa, G. Esther, V. Narayanan, A. Stephen, AIP Proc. 1731, 050092 (2016)Google Scholar
  35. 35.
    S. Dhanavel, T.A. Revathy, A. Padmanaban, V. Narayanan, A. Stephen, J. Mater. Sci Mater. Electron. 29, 14093 (2018)CrossRefGoogle Scholar
  36. 36.
    X. Yang, J.-K. Sun, M. Kitta, H. Pang, Q. Xu, Nat. Catal. 1, 214 (2018)CrossRefGoogle Scholar
  37. 37.
    A.A.S. Nair, R. Sundara, J. Phys. Chem. C 120, 9612 (2016)CrossRefGoogle Scholar
  38. 38.
    B. Coq, F. Figueras, J. Mol. Catal. A Chem. 173, 117 (2001)CrossRefGoogle Scholar
  39. 39.
    K. Dhanapal, T.A. Revathy, S. Dhanavel, V. Narayanan, A. Stephen, Surfaces Interfaces 7, 58 (2017)CrossRefGoogle Scholar
  40. 40.
    J. Yang, W.D. Wang, Z. Dong, J. Colloid Interface Sci. 524, 84 (2018)CrossRefGoogle Scholar
  41. 41.
    A.K. Singh, Q. Xu, ChemCatChem 5, 652 (2013)CrossRefGoogle Scholar
  42. 42.
    Y. Peng, B. Lu, N. Wang, L. Li, S. Chen, PCCP 19, 9336 (2017)CrossRefGoogle Scholar
  43. 43.
    E. Toyoda, R. Jinnouchi, T. Hatanaka, Y. Morimoto, K. Mitsuhara, A. Visikovskiy, Y. Kido, J. Phys. Chem. C 115, 21236 (2011)CrossRefGoogle Scholar
  44. 44.
    J.D. Aiken, R.G. Finke, J. Mol. Catal. A Chem. 145, 1 (1999)CrossRefGoogle Scholar
  45. 45.
    J. Krajczewski, K. Kołątaj, A. Kudelski, Appl. Surf. Sci. 388, 624 (2016)CrossRefGoogle Scholar
  46. 46.
    H. Lu, H. Yin, Y. Liu, T. Jiang, L. Yu, Catal. Commun. 10, 313 (2008)CrossRefGoogle Scholar
  47. 47.
    H. Guan, C. Chao, W. Kong, Z. Hu, Y. Zhao, S. Yuan, B. Zhang, J. Nanopart. Res. 19, 187 (2017)CrossRefGoogle Scholar
  48. 48.
    F. Yang, D.L. Zhao, Mater. Sci. Forum 475–479, 3107 (2005)CrossRefGoogle Scholar
  49. 49.
    F.J.C.M. Toolenaar, F. Stoop, V. Ponec, J. Catal. 82, 1 (1983)CrossRefGoogle Scholar
  50. 50.
    A.E. Baber, H.L. Tierney, E.C.H. Sykes, ACS Nano 4, 1637 (2010)CrossRefGoogle Scholar
  51. 51.
    T.A. Revathy, K. Dhanapal, S. Dhanavel, V. Narayanan, A. Stephen, J. Alloys Compd. 735, 1703 (2018)CrossRefGoogle Scholar
  52. 52.
    Y. Zhong, Y. Gu, L. Yu, G. Cheng, X. Yang, M. Sun, B. He, Colloids Surf. A 547, 28 (2018)CrossRefGoogle Scholar
  53. 53.
    F. Li, Y. Liu, T. Ma, D. Xu, X. Li, G. Gong, New J. Chem. 41, 4014 (2017)CrossRefGoogle Scholar
  54. 54.
    T. Vats, S. Dutt, R. Kumar, P.F. Siril, Sci Rep. 6, 33053 (2016)CrossRefGoogle Scholar
  55. 55.
    M. Ma, H.A. Hansen, M. Valenti, Z. Wang, A. Cao, M. Dong, W.A. Smith, Nano Energy 42, 51 (2017)CrossRefGoogle Scholar
  56. 56.
    D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P.D. Yang, Nat. Commun. 5, 4948 (2014)CrossRefGoogle Scholar
  57. 57.
    N. Palina, O. Sakata, L.S.R. Kumara, C. Song, K. Sato, K. Nagaoka, T. Komatsu, H. Kobayashi, K. Kusada, H. Kitagawa, Sci Rep. 7, 41264 (2017)CrossRefGoogle Scholar
  58. 58.
    M. Krawczyk, J.W. Sobczak, Appl. Surf. Sci. 235, 49 (2004)CrossRefGoogle Scholar
  59. 59.
    P. Chandran, A. Ghosh, S. Ramaprabhu, Sci. Rep. 8, 3591 (2018)CrossRefGoogle Scholar
  60. 60.
    K.X. Zhu, C.Z. Jin, Z. Klencsar, A.S. Ganeshraja, J.H. Wang, Catalysts 7, 138 (2017)CrossRefGoogle Scholar
  61. 61.
    M.A. Matin, J.-H. Jang, Y.-U. Kwon, J. Power Sour. 262, 356 (2014)CrossRefGoogle Scholar
  62. 62.
    A. Mondal, A. Mondal, B. Adhikary, D.K. Mukherjee, Bull. Mater. Sci. 40, 321 (2017)CrossRefGoogle Scholar
  63. 63.
    S.M. El-Sheikh, A.A. Ismail, J.F. Al-Sharab, New J. Chem. 37, 2399 (2013)CrossRefGoogle Scholar
  64. 64.
    Z. Dong, X. Le, C. Dong, W. Zhang, X. Li, J. Ma, Appl. Catal. B 162, 372 (2015)CrossRefGoogle Scholar
  65. 65.
    X. Le, Z. Dong, Y. Liu, Z. Jin, T.-D. Huy, M. Le, J. Ma, J. Mater. Chem. A 2, 19696 (2014)CrossRefGoogle Scholar
  66. 66.
    J. Sun, Y. Fu, G. He, X. Sun, X. Wang, Catal. Sci. Technol. 4, 1742 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • T. A. Revathy
    • 1
  • T. Sivaranjani
    • 1
  • A. A. Boopathi
    • 2
    • 3
  • Srinivasan Sampath
    • 4
  • V. Narayanan
    • 5
  • A. Stephen
    • 1
    Email author
  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  2. 2.Polymer Science and Technology DivisionCouncil of Scientific and Industrial Research–Central Leather Research InstituteChennaiIndia
  3. 3.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia
  4. 4.Department of Materials Science, School of TechnologyCentral University of Tamil NaduThiruvarurIndia
  5. 5.Department of Inorganic ChemistryUniversity of MadrasChennaiIndia

Personalised recommendations