Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 2, pp 757–768 | Cite as

Rapid degradation of tetrabromobisphenol A under the UV/TiO2/KPS systems in alkaline aqueous solutions

  • Qiang Li
  • Lifang Wang
  • Li ZhangEmail author
  • Hongyong XieEmail author
Article
  • 45 Downloads

Abstract

In this study, rapid degradation of Tetrabromobisphenol A (TBBPA) is explored by using photocatalysis of homo/heterogeneous UV/TiO2/potassium persulfate (KPS) systems in alkaline solutions. The experimental results show increasing pH values and decreasing the initial concentration of TBBPA could increase the degradation degree, while the loading amount of TiO2 and dosage of potassium persulfate have optimum values to increase the degradation degree. TBBPA can be almost completely degraded and 70% of TOC removal efficiency is achieved in the UV/TiO2/KPS homo/heterogeneous photocatalysis, much more than the UV/KPS system and UV/TiO2 system. Roles of radicals \(\text{SO}_{\text{4}}^{ \cdot - }\) and OH· in the photocatalysis systems are discussed based on experimental measurements. The significant TOC removal efficiency and increased bromide ion concentration yield show that there exist synergistic effects in the UV/TiO2/KPS homo/heterogeneous photocatalysis, which can mineralize TBBPA into inorganic small molecules relatively thoroughly, thus much less intermediates are formed in the UV/TiO2/KPS homo/heterogeneous photocatalysis.

Keywords

Tetrabromobisphenol A Homo/heterogeneous photocatalysis TiO2 nanoparticles Synergistic effects 

Notes

Acknowledgements

The authors are thankful for Natural Science Foundation of China (No. 21806101), Natural Science Foundation of Shanghai (Nos. 16ZR1412600, 15ZR1401200), Innovation Research Grant (13YZ130), and Leading Academic Discipline Project (J51803) from the Shanghai Education Committee.

References

  1. 1.
    Q. Wu, M.N. Li, Z. Huang, Y.M. Shao, L. Bai, L.C. Zhou, J. Ind. Eng. Chem. 60, 268 (2018)CrossRefGoogle Scholar
  2. 2.
    C.A. de Wit, Chemosphere 46, 583 (2002)CrossRefGoogle Scholar
  3. 3.
    M.H. Cao, P.F. Wang, Y.H. Ao, C. Wang, J. Hou, J. Qian, Chem. Eng. J. 264, 113 (2015)CrossRefGoogle Scholar
  4. 4.
    M.A.E. Abdallah, S. Harrad, A. Covaci, Environ. Sci. Technol. 42, 6855 (2008)CrossRefGoogle Scholar
  5. 5.
    Y.R. Dai, Y.H. Song, S.Y. Wang, Y. Yuan, Water Res. 71, 64 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Viberg, P. Eriksson, Toxicology 289, 59 (2011)CrossRefGoogle Scholar
  7. 7.
    B.R. Zhu, G. Zhao, L.H. Yang, B.S. Zhou, Chemosphere 197, 353 (2018)CrossRefGoogle Scholar
  8. 8.
    Z. Ronen, A. Abeliovich, Appl. Environ. Microbiol. 66, 2372 (2000)CrossRefGoogle Scholar
  9. 9.
    J.J. An, L.H. Zhu, N. Wang, Z. Song, Z.Y. Yang, D.Y. Du, H.Q. Tang, Chem. Eng. J. 219, 225 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.B. Ding, L.H. Zhu, N. Wang, H.Q. Tang, Appl. Catal. B Environ. 129, 153 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.G. Guo, X.Y. Lou, D.X. Xiao, L. Xu, Z.H. Wang, J.S. Liu, J. Hazard. Mater. 241–242, 301 (2014)Google Scholar
  12. 12.
    S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147, 1 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Xu, J. Ai, H. Zhang, J. Hazard. Mater. 309, 87 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Saien, Z. Ojaghloo, A.R. Soleymani, M.H. Rasoulifard, Chem. Eng. J. 167, 172 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Salari, A. Niaei, S. Aber, M.H. Rasoulifard, J. Hazard. Mater. 166, 61 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Thayer, Chem. Eng. News 81, 11 (2003)Google Scholar
  17. 17.
    H. Jin, D.Y. Kong, Y.F. Ji, J.H. Lu, Q.S. Zhou, RSC Adv. 6, 29718 (2016)CrossRefGoogle Scholar
  18. 18.
    J.Y. Zhao, Y.B. Zhang, X. Quan, S. Chen, Sep. Purif. Technol. 71, 302 (2010)CrossRefGoogle Scholar
  19. 19.
    Y.G. Guo, J. Zhou, X.Y. Lou, R.L. Liu, D.X. Xiao, C.L. Fang, Z.H. Wang, J.S. Liu, Chem. Eng. J. 254, 538 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17, 1027 (1988)CrossRefGoogle Scholar
  21. 21.
    R. Hazime, Q.H.C. Ferronato, A. Salvador, F. Jaber, J.M. Chovelon, Appl. Catal. B Environ. 144, 286 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Ahmadi, F. Ghanbari, M. Moradi, Water Sci. Technol. 72, 2095 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Kuramochi, K. Kawamoto, K. Miyazaki, K. Nagahama, K. Maeda, X.W. Li, E. Shibata, T. Nakamura, S. Sakai, Environ. Toxicol. Chem. 27, 2413 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Zhong, X. Liang, Y. Zhong, J. Zhu, S. Zhu, P. Yuan, H. He, J. Zhang, Water Res. 46, 4633 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Xu, W. Meng, Y. Zhang, L. Lei, C.S. Guo, Appl. Catal. B Environ. 107, 355 (2011)CrossRefGoogle Scholar
  26. 26.
    H.Y. Xie, L.P. Zhu, L.L. Wang, S.W. Chen, D.D. Yang, L.J. Yang, G.L. Gao, H. Yuan, Particuology 9, 75 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Zhang, Q.H. Zhang, H.Y. Xie, J. Guo, H.L. Lyu, Y.G. Li, Z.G. Sun, H.Z. Wang, Z.H. Guo, Appl. Catal. B Environ. 201, 470 (2017)CrossRefGoogle Scholar
  28. 28.
    H.Y. Xie, S.W. Chen, C.W. Ma, J.R. Wang, L.P. Zhu, L.L. Wang, G.L. Gao, L.J. Wang, H. Yang, Adv. Mater. Res. 233–235, 1474 (2011)CrossRefGoogle Scholar
  29. 29.
    F. Loosli, S. Stoll, Environ. Sci. NANO 4, 203 (2017)Google Scholar
  30. 30.
    J.P. Holmberg, E. Ahlberg, J. Bergenholtz, M. Hassellov, Z. Abbas, J. Colloid Interface Sci. 407, 168 (2013)CrossRefGoogle Scholar
  31. 31.
    WHO Working Group, Environ. Health Criteria 172, 23 (1995)Google Scholar
  32. 32.
    G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988)CrossRefGoogle Scholar
  33. 33.
    H. Einaga, A. Ogata, S. Futamura, T. Ibusuki, Chem. Phys. Lett. 338, 303 (2001)CrossRefGoogle Scholar
  34. 34.
    Z.Y. Liu, D.D.L. Sun, P. Guo, J.O. Leckie, Nano Lett. 7, 1081 (2007)CrossRefGoogle Scholar
  35. 35.
    L. Varanasi, E. Coscarelli, M. Khaksari, L.R. Mazzoleni, D. Minakata, Water Res. 135, 22 (2018)CrossRefGoogle Scholar
  36. 36.
    W. Li, T. Jain, K. Ishida, H.Z. Liu, Environ. Sci. Water Res. Technol. 3, 128 (2017)CrossRefGoogle Scholar
  37. 37.
    G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 38, 3705 (2004)CrossRefGoogle Scholar
  38. 38.
    K.E. Manz, K.E. Carter, Chem. Eng. J. 327, 1021 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of ManagementNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Environment and Materials Engineering, College of EngineeringShanghai Polytechnic UniversityShanghaiChina

Personalised recommendations