The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers
- 21 Downloads
Abstract
Microbial chitinase has received great attention due to its medical, biological, and agricultural applications. In this study, over 50 bacterial strains were isolated from Taiwanese soils using medium containing squid pen powder (SPP) as the sole source of carbon/nitrogen. Based on chitinolytic activity, Streptomyces thermocarboxydus TKU045 was selected for further study. Optimized culture conditions revealed that S. thermocarboxydus TKU045 could produce the highest chitinase activity (52.985 U/mL) when cultured in a medium containing 1% (w/v) SPP at 45 °C for 36 h. Characterized TKU045 chitinase showed novel properties with a smallest molecular weight (12.8 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis) and more acidic optimal pH (pH 4) than those of other Streptomyces chitinases. A combination of high-performance liquid chromatography and matrix-assisted laser desorption ionization time of flight mass spectrometer data revealed that chitin oligomers (COS) obtained from the hydrolysis of colloidal chitin by TKU045 chitinase comprise oligomers with multiple degrees of polymerization (DP) varying from 1 to 7. The COS with low DP exhibited enhanced 2,2-diphenyl-1-picrylhydrazyl radical scavenging capability and promoted the growth of Lactobacillus lactis. Taken together, the COS obtained by hydrolyzing colloidal chitin with TKU045 chitinase could have the potential to be used in medicine or nutraceuticals due to its active anti-oxidant and prebiotic contents.
Keywords
Chitin Chitinase Squid pens Anti-oxidant Prebiotic Streptomyces thermocarboxydusNotes
Acknowledgment
This work was supported in part by a grant from the Ministry of Science and Technology, Taiwan (MOST 106-2320-B-032-001-MY3).
Author Contributions
Conceived the study: S-LW. Designed and performed the study: S-LW, TNT. Contributed reagents/materials/analysis tools: S-LW. Analyzed data: TNT, CTD, VBN, ADN. Wrote the paper: S-LW, TNT.
Compliance with ethical standards
Conflict of interest
The authors declare no conflict of interest
Supplementary material
References
- 1.S.L. Wang, T.W. Liang, Res. Chem. Interm. 43, 3445 (2017)CrossRefGoogle Scholar
- 2.G. Akca, A. Özdemir, Z.G. Öner, S. Şenel, Res. Chem. Interm. 44, 4811 (2018)CrossRefGoogle Scholar
- 3.F. Ding, H. Li, Y. Du, X. Shi, Res. Chem. Interm. 44, 4827 (2018)CrossRefGoogle Scholar
- 4.M.M. Jaworska, A. Górak, Res. Chem. Interm. 44, 4841 (2018)CrossRefGoogle Scholar
- 5.L.C. Tsai, M.L. Tsai, K.Y. Lu, F.L. Mi, Res. Chem. Interm. 44, 4855 (2018)CrossRefGoogle Scholar
- 6.A. Mohandas, W. Sun, T.R. Nimal, S.A. Shankarappa, N.S. Hwang, R. Jayakumar, Res. Chem. Interm. 44, 4873 (2018)CrossRefGoogle Scholar
- 7.P. Hiranpattanakul, T. Jongjitpissamai, S. Aungwerojanawit, W. Tachaboonyakiat, Res. Chem. Interm. 44, 4913 (2018)CrossRefGoogle Scholar
- 8.D. Kotatha, K. Morishima, S. Uchida, M. Ogino, M. Ishikawa, T. Furuike, H. Tamura, Res. Chem. Interm. 44, 4971 (2018)CrossRefGoogle Scholar
- 9.T.W. Liang, W.T. Chen, Z.H. Lin, Y.H. Kuo, A.D. Nguyen, P.S. Pan, S.L. Wang, Int. J. Mol. Sci. 17, 1302 (2016)CrossRefGoogle Scholar
- 10.S. Sinha, S. Chand, P. Tripathi, Appl. Biochem. Biotechnol. 180, 883 (2016)CrossRefGoogle Scholar
- 11.Q. Xiong, Y. Wei, H. Xie, Z. Feng, Y. Gan, C. Wang, M. Liu, F. Bai, F. Xie, G. Shao, Vaccine 32, 3445 (2014)CrossRefGoogle Scholar
- 12.C. Villiers, M. Chevallet, H. Diemer, R. Couderc, H. Freitas, A. Van Dorsselaer, P.N. Marche, T. Rabilloud, Mol. Cell. Proteomics 8, 1252 (2009)CrossRefGoogle Scholar
- 13.D.V. Gerasimenko, I.D. Avdienko, G.E. Bannikova, OYu. Zueva, V.P. Varlamov, Appl. Biochem. Micro. 40, 253 (2004)CrossRefGoogle Scholar
- 14.S. Sinha, P. Tripathi, S. Chand, Appl. Biochem. Biotechnol. 167, 1029 (2012)CrossRefGoogle Scholar
- 15.P.J. Park, J.Y. Je, S.K. Kim, Carbohydr. Polym. 55, 17 (2004)CrossRefGoogle Scholar
- 16.W.J. Jung, R.D. Park, Mar Drugs 12, 5328 (2014)CrossRefGoogle Scholar
- 17.M. Kuddus, I.Z. Ahmad, J. Gen. Eng. Biotechnol. 11, 39 (2013)CrossRefGoogle Scholar
- 18.S.L. Wang, T.W. Liang, Y.H. Yen, Carbohydr. Polym. 84, 732 (2011)CrossRefGoogle Scholar
- 19.S.L. Wang, H.T. Yu, M.H. Tsai, C.T. Doan, V.B. Nguyen, V.C. Do, A.D. Nguyen, Res. Chem. Interm. 44, 4903 (2018)CrossRefGoogle Scholar
- 20.C.L. Wang, J.W. Su, T.W. Liang, A.D. Nguyen, S.L. Wang, Res. Chem. Interm. 40, 2237 (2014)CrossRefGoogle Scholar
- 21.T.W. Liang, Y.Y. Chen, P.S. Pan, S.L. Wang, Int. J. Biol. Macromol. 63, 8 (2014)CrossRefGoogle Scholar
- 22.T.W. Liang, T.Y. Shieh, S.L. Wang, Bioproc. Biosyst. Eng. 37, 1201 (2014)CrossRefGoogle Scholar
- 23.S.L. Wang, C.P. Liu, T.W. Liang, Carbohydr. Polym. 90, 1305 (2012)CrossRefGoogle Scholar
- 24.T.W. Liang, J.L. Hsieh, S.L. Wang, Carbohydr. Res. 362, 38 (2012)CrossRefGoogle Scholar
- 25.S.L. Wang, P.C. Wu, T.W. Liang, Carbohydr. Res. 344, 979 (2009)CrossRefGoogle Scholar
- 26.K.J. Kim, Y.J. Yang, J.G. Kim, J. Biochem. Mol. Biol. 36, 185 (2003)Google Scholar
- 27.Y. Han, B. Yang, F. Zhang, X. Miao, Z. Li, Mar. Biotechnol. 11, 132 (2009)CrossRefGoogle Scholar
- 28.G.C. Pradeep, H.Y. Yoo, Y.H. Choi, J.C. Yoo, Appl. Biochem. Biotechnol. 175, 372 (2015)CrossRefGoogle Scholar
- 29.M. Rabeeth, A. Anitha, G. Srikanth, Pak. J. Biol. Sci. 14, 788 (2011)CrossRefGoogle Scholar
- 30.A. Nagpure, P.K. Gupta, J. Basic Microbiol. 53, 429 (2013)CrossRefGoogle Scholar
- 31.M. Gangwar, V. Singh, A.K. Pandey, C.K. Tripathi, Indian J. Exp. Biol. 54, 64 (2016)Google Scholar
- 32.C.T. Doan, T.N. Tran, V.B. Nguyen, A.D. Nguyen, S.L. Wang, Mar. Drugs 16, 83 (2018)CrossRefGoogle Scholar
- 33.T.W. Liang, S.C. Tseng, S.L. Wang, Mar. Drugs 14, 40 (2016)CrossRefGoogle Scholar
- 34.S.L. Wang, C.W. Yang, T.W. Liang, C.L. Wang, Carbohydr. Polym. 78, 205 (2009)CrossRefGoogle Scholar
- 35.S.L. Wang, C.L. Lin, T.W. Liang, K.C. Liu, Y.H. Kuo, Bioresour. Technol. 100, 316 (2009)CrossRefGoogle Scholar
- 36.A.D. Nguyen, C.C. Huang, T.W. Liang, V.B. Nguyen, P.S. Pan, S.L. Wang, Carbohydr. Polym. 108, 331 (2014)CrossRefGoogle Scholar
- 37.N. Shekhar, D. Bhattacharya, D. Kumar, R.L. Gupta, Can. J. Microbiol. 52, 805 (2006)CrossRefGoogle Scholar
- 38.P. Mander, S.S. Cho, Y.H. Cho, S. Panthi, Y.S. Cho, H.M. Kim, J.C. Yoo, Arch. Pharm. Res. 39, 878 (2016)CrossRefGoogle Scholar
- 39.N. Karthik, P. Binod, A. Pandey, Bioresour. Technol. 188, 195 (2015)CrossRefGoogle Scholar
- 40.M.A. Rahman, Y.H. Choi, G.C. Pradeep, J.C. Yoo, Arch. Pharmac. Res. 37, 1522 (2014)CrossRefGoogle Scholar
- 41.G.J. Joo, Biotechnol. Lett. 27, 1483 (2005)CrossRefGoogle Scholar
- 42.G. Mukherjee, S.K. Sen, Curr. Microbiol. 53, 265 (2006)CrossRefGoogle Scholar
- 43.S.L. Wang, T.Y. Huang, C.Y. Wang, T.W. Liang, Y.H. Yen, Y. Sakata, Bioresour. Technol. 99, 5436 (2008)CrossRefGoogle Scholar
- 44.S.L. Wang, J.Y. Liou, T.W. Liang, K.C. Liu, Process Biochem. 44, 854 (2009)CrossRefGoogle Scholar
- 45.S.L. Wang, D.Y. Kao, C.L. Wang, Y.H. Yen, M.K. Chern, Y.H. Chen, Enzyme Microb. Technol. 39, 724 (2006)CrossRefGoogle Scholar
- 46.V.B. Nguyen, A.D. Nguyen, S.L. Wang, Mar. Drugs 15, 274 (2017)CrossRefGoogle Scholar
- 47.S.L. Wang, H.T. Li, L.J. Zhang, Z.H. Lin, Y.H. Kuo, Mar. Drugs 14, 183 (2016)CrossRefGoogle Scholar
- 48.T.W. Liang, S.C. Tseng, S.L. Wang, Mar. Drugs 14, 40 (2016)CrossRefGoogle Scholar
- 49.T.W. Liang, C.C. Wu, W.T. Cheng, Y.C. Chen, C.L. Wang, I.L. Wang, S.L. Wang, Appl. Biochem. Biotechnol. 172, 933 (2014)CrossRefGoogle Scholar
- 50.C.L. Wang, T.H. Huang, T.W. Liang, S.L. Wang, New Biotechnol. 28, 559 (2011)CrossRefGoogle Scholar
- 51.S.L. Wang, C.Y. Wang, Y.H. Yen, T.W. Liang, S.Y. Chen, C.H. Chen, Process Biochem. 47, 1684 (2012)CrossRefGoogle Scholar
- 52.S.L. Wang, W.H. Hsu, T.W. Liang, Carbohydr. Res. 345, 880 (2010)CrossRefGoogle Scholar
- 53.S.L. Wang, W.T. Chang, Appl. Environ. Microbiol. 63, 380 (1997)Google Scholar
- 54.T.W. Liang, Y.J. Chen, Y.H. Yen, S.L. Wang, Process Biochem. 42, 527 (2007)CrossRefGoogle Scholar
- 55.K. Kim, N. Rajapakse, Carbohydr. Polym. 62, 357 (2005)CrossRefGoogle Scholar
- 56.H.W. Lee, Y.S. Parkb, J.S. Jungb, W.S. Shinb, Anaerobe 8, 319 (2002)CrossRefGoogle Scholar