Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 2, pp 727–742 | Cite as

The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers

  • Thi Ngoc Tran
  • Chien Thang Doan
  • Van Bon Nguyen
  • Anh Dzung Nguyen
  • San-Lang WangEmail author
Article
  • 21 Downloads

Abstract

Microbial chitinase has received great attention due to its medical, biological, and agricultural applications. In this study, over 50 bacterial strains were isolated from Taiwanese soils using medium containing squid pen powder (SPP) as the sole source of carbon/nitrogen. Based on chitinolytic activity, Streptomyces thermocarboxydus TKU045 was selected for further study. Optimized culture conditions revealed that S. thermocarboxydus TKU045 could produce the highest chitinase activity (52.985 U/mL) when cultured in a medium containing 1% (w/v) SPP at 45 °C for 36 h. Characterized TKU045 chitinase showed novel properties with a smallest molecular weight (12.8 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis) and more acidic optimal pH (pH 4) than those of other Streptomyces chitinases. A combination of high-performance liquid chromatography and matrix-assisted laser desorption ionization time of flight mass spectrometer data revealed that chitin oligomers (COS) obtained from the hydrolysis of colloidal chitin by TKU045 chitinase comprise oligomers with multiple degrees of polymerization (DP) varying from 1 to 7. The COS with low DP exhibited enhanced 2,2-diphenyl-1-picrylhydrazyl radical scavenging capability and promoted the growth of Lactobacillus lactis. Taken together, the COS obtained by hydrolyzing colloidal chitin with TKU045 chitinase could have the potential to be used in medicine or nutraceuticals due to its active anti-oxidant and prebiotic contents.

Keywords

Chitin Chitinase Squid pens Anti-oxidant Prebiotic Streptomyces thermocarboxydus 

Notes

Acknowledgment

This work was supported in part by a grant from the Ministry of Science and Technology, Taiwan (MOST 106-2320-B-032-001-MY3).

Author Contributions

Conceived the study: S-LW. Designed and performed the study: S-LW, TNT. Contributed reagents/materials/analysis tools: S-LW. Analyzed data: TNT, CTD, VBN, ADN. Wrote the paper: S-LW, TNT.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest

Supplementary material

11164_2018_3639_MOESM1_ESM.docx (105 kb)
Supplementary material 1 (DOCX 104 kb)

References

  1. 1.
    S.L. Wang, T.W. Liang, Res. Chem. Interm. 43, 3445 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Akca, A. Özdemir, Z.G. Öner, S. Şenel, Res. Chem. Interm. 44, 4811 (2018)CrossRefGoogle Scholar
  3. 3.
    F. Ding, H. Li, Y. Du, X. Shi, Res. Chem. Interm. 44, 4827 (2018)CrossRefGoogle Scholar
  4. 4.
    M.M. Jaworska, A. Górak, Res. Chem. Interm. 44, 4841 (2018)CrossRefGoogle Scholar
  5. 5.
    L.C. Tsai, M.L. Tsai, K.Y. Lu, F.L. Mi, Res. Chem. Interm. 44, 4855 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Mohandas, W. Sun, T.R. Nimal, S.A. Shankarappa, N.S. Hwang, R. Jayakumar, Res. Chem. Interm. 44, 4873 (2018)CrossRefGoogle Scholar
  7. 7.
    P. Hiranpattanakul, T. Jongjitpissamai, S. Aungwerojanawit, W. Tachaboonyakiat, Res. Chem. Interm. 44, 4913 (2018)CrossRefGoogle Scholar
  8. 8.
    D. Kotatha, K. Morishima, S. Uchida, M. Ogino, M. Ishikawa, T. Furuike, H. Tamura, Res. Chem. Interm. 44, 4971 (2018)CrossRefGoogle Scholar
  9. 9.
    T.W. Liang, W.T. Chen, Z.H. Lin, Y.H. Kuo, A.D. Nguyen, P.S. Pan, S.L. Wang, Int. J. Mol. Sci. 17, 1302 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Sinha, S. Chand, P. Tripathi, Appl. Biochem. Biotechnol. 180, 883 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. Xiong, Y. Wei, H. Xie, Z. Feng, Y. Gan, C. Wang, M. Liu, F. Bai, F. Xie, G. Shao, Vaccine 32, 3445 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Villiers, M. Chevallet, H. Diemer, R. Couderc, H. Freitas, A. Van Dorsselaer, P.N. Marche, T. Rabilloud, Mol. Cell. Proteomics 8, 1252 (2009)CrossRefGoogle Scholar
  13. 13.
    D.V. Gerasimenko, I.D. Avdienko, G.E. Bannikova, OYu. Zueva, V.P. Varlamov, Appl. Biochem. Micro. 40, 253 (2004)CrossRefGoogle Scholar
  14. 14.
    S. Sinha, P. Tripathi, S. Chand, Appl. Biochem. Biotechnol. 167, 1029 (2012)CrossRefGoogle Scholar
  15. 15.
    P.J. Park, J.Y. Je, S.K. Kim, Carbohydr. Polym. 55, 17 (2004)CrossRefGoogle Scholar
  16. 16.
    W.J. Jung, R.D. Park, Mar Drugs 12, 5328 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Kuddus, I.Z. Ahmad, J. Gen. Eng. Biotechnol. 11, 39 (2013)CrossRefGoogle Scholar
  18. 18.
    S.L. Wang, T.W. Liang, Y.H. Yen, Carbohydr. Polym. 84, 732 (2011)CrossRefGoogle Scholar
  19. 19.
    S.L. Wang, H.T. Yu, M.H. Tsai, C.T. Doan, V.B. Nguyen, V.C. Do, A.D. Nguyen, Res. Chem. Interm. 44, 4903 (2018)CrossRefGoogle Scholar
  20. 20.
    C.L. Wang, J.W. Su, T.W. Liang, A.D. Nguyen, S.L. Wang, Res. Chem. Interm. 40, 2237 (2014)CrossRefGoogle Scholar
  21. 21.
    T.W. Liang, Y.Y. Chen, P.S. Pan, S.L. Wang, Int. J. Biol. Macromol. 63, 8 (2014)CrossRefGoogle Scholar
  22. 22.
    T.W. Liang, T.Y. Shieh, S.L. Wang, Bioproc. Biosyst. Eng. 37, 1201 (2014)CrossRefGoogle Scholar
  23. 23.
    S.L. Wang, C.P. Liu, T.W. Liang, Carbohydr. Polym. 90, 1305 (2012)CrossRefGoogle Scholar
  24. 24.
    T.W. Liang, J.L. Hsieh, S.L. Wang, Carbohydr. Res. 362, 38 (2012)CrossRefGoogle Scholar
  25. 25.
    S.L. Wang, P.C. Wu, T.W. Liang, Carbohydr. Res. 344, 979 (2009)CrossRefGoogle Scholar
  26. 26.
    K.J. Kim, Y.J. Yang, J.G. Kim, J. Biochem. Mol. Biol. 36, 185 (2003)Google Scholar
  27. 27.
    Y. Han, B. Yang, F. Zhang, X. Miao, Z. Li, Mar. Biotechnol. 11, 132 (2009)CrossRefGoogle Scholar
  28. 28.
    G.C. Pradeep, H.Y. Yoo, Y.H. Choi, J.C. Yoo, Appl. Biochem. Biotechnol. 175, 372 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Rabeeth, A. Anitha, G. Srikanth, Pak. J. Biol. Sci. 14, 788 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Nagpure, P.K. Gupta, J. Basic Microbiol. 53, 429 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Gangwar, V. Singh, A.K. Pandey, C.K. Tripathi, Indian J. Exp. Biol. 54, 64 (2016)Google Scholar
  32. 32.
    C.T. Doan, T.N. Tran, V.B. Nguyen, A.D. Nguyen, S.L. Wang, Mar. Drugs 16, 83 (2018)CrossRefGoogle Scholar
  33. 33.
    T.W. Liang, S.C. Tseng, S.L. Wang, Mar. Drugs 14, 40 (2016)CrossRefGoogle Scholar
  34. 34.
    S.L. Wang, C.W. Yang, T.W. Liang, C.L. Wang, Carbohydr. Polym. 78, 205 (2009)CrossRefGoogle Scholar
  35. 35.
    S.L. Wang, C.L. Lin, T.W. Liang, K.C. Liu, Y.H. Kuo, Bioresour. Technol. 100, 316 (2009)CrossRefGoogle Scholar
  36. 36.
    A.D. Nguyen, C.C. Huang, T.W. Liang, V.B. Nguyen, P.S. Pan, S.L. Wang, Carbohydr. Polym. 108, 331 (2014)CrossRefGoogle Scholar
  37. 37.
    N. Shekhar, D. Bhattacharya, D. Kumar, R.L. Gupta, Can. J. Microbiol. 52, 805 (2006)CrossRefGoogle Scholar
  38. 38.
    P. Mander, S.S. Cho, Y.H. Cho, S. Panthi, Y.S. Cho, H.M. Kim, J.C. Yoo, Arch. Pharm. Res. 39, 878 (2016)CrossRefGoogle Scholar
  39. 39.
    N. Karthik, P. Binod, A. Pandey, Bioresour. Technol. 188, 195 (2015)CrossRefGoogle Scholar
  40. 40.
    M.A. Rahman, Y.H. Choi, G.C. Pradeep, J.C. Yoo, Arch. Pharmac. Res. 37, 1522 (2014)CrossRefGoogle Scholar
  41. 41.
    G.J. Joo, Biotechnol. Lett. 27, 1483 (2005)CrossRefGoogle Scholar
  42. 42.
    G. Mukherjee, S.K. Sen, Curr. Microbiol. 53, 265 (2006)CrossRefGoogle Scholar
  43. 43.
    S.L. Wang, T.Y. Huang, C.Y. Wang, T.W. Liang, Y.H. Yen, Y. Sakata, Bioresour. Technol. 99, 5436 (2008)CrossRefGoogle Scholar
  44. 44.
    S.L. Wang, J.Y. Liou, T.W. Liang, K.C. Liu, Process Biochem. 44, 854 (2009)CrossRefGoogle Scholar
  45. 45.
    S.L. Wang, D.Y. Kao, C.L. Wang, Y.H. Yen, M.K. Chern, Y.H. Chen, Enzyme Microb. Technol. 39, 724 (2006)CrossRefGoogle Scholar
  46. 46.
    V.B. Nguyen, A.D. Nguyen, S.L. Wang, Mar. Drugs 15, 274 (2017)CrossRefGoogle Scholar
  47. 47.
    S.L. Wang, H.T. Li, L.J. Zhang, Z.H. Lin, Y.H. Kuo, Mar. Drugs 14, 183 (2016)CrossRefGoogle Scholar
  48. 48.
    T.W. Liang, S.C. Tseng, S.L. Wang, Mar. Drugs 14, 40 (2016)CrossRefGoogle Scholar
  49. 49.
    T.W. Liang, C.C. Wu, W.T. Cheng, Y.C. Chen, C.L. Wang, I.L. Wang, S.L. Wang, Appl. Biochem. Biotechnol. 172, 933 (2014)CrossRefGoogle Scholar
  50. 50.
    C.L. Wang, T.H. Huang, T.W. Liang, S.L. Wang, New Biotechnol. 28, 559 (2011)CrossRefGoogle Scholar
  51. 51.
    S.L. Wang, C.Y. Wang, Y.H. Yen, T.W. Liang, S.Y. Chen, C.H. Chen, Process Biochem. 47, 1684 (2012)CrossRefGoogle Scholar
  52. 52.
    S.L. Wang, W.H. Hsu, T.W. Liang, Carbohydr. Res. 345, 880 (2010)CrossRefGoogle Scholar
  53. 53.
    S.L. Wang, W.T. Chang, Appl. Environ. Microbiol. 63, 380 (1997)Google Scholar
  54. 54.
    T.W. Liang, Y.J. Chen, Y.H. Yen, S.L. Wang, Process Biochem. 42, 527 (2007)CrossRefGoogle Scholar
  55. 55.
    K. Kim, N. Rajapakse, Carbohydr. Polym. 62, 357 (2005)CrossRefGoogle Scholar
  56. 56.
    H.W. Lee, Y.S. Parkb, J.S. Jungb, W.S. Shinb, Anaerobe 8, 319 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryTamkang UniversityNew Taipei CityTaiwan
  2. 2.Department of Science and TechnologyTay Nguyen UniversityBuon Ma ThuotVietnam
  3. 3.Institute of Biotechnology and EnvironmentTay Nguyen UniversityBuon Ma ThuotVietnam
  4. 4.Life Science Development CenterTamkang UniversityNew Taipei CityTaiwan

Personalised recommendations