Research on Chemical Intermediates

, Volume 45, Issue 2, pp 645–661 | Cite as

Comparison of sulfuric acid- or phosphoric acid-modified CeO2 and the influence of surface acidity and redox property on its activity toward NH3-SCR

  • Zhongxian Song
  • Junkai Wang
  • Qiulin ZhangEmail author
  • Dong Ren
  • Hongpan Liu
  • Ping Ning
  • Xuejun ZhangEmail author
  • Haiyan Kang
  • Biao Liu
  • Yanli Mao


A series of CeO2 prepared with H2SO4 (C–S), H3PO4 (C–P) and H2SO4 + H3PO4 (C–P–S) were investigated in selective catalytic reduction of NOx with NH3. The sulfates contributed to the improvement of Brønsted (B) acid sites, while phosphates were prone to the enhancement of Lewis (L) acid sites, which could improve the catalytic activity. Furthermore, sulfates existed in the surface of C–P–S and C–S; phosphates occurred on the subsurface region or were highly dispersed on the surface of C–P–S and C–P. Besides, the nitrates adsorbed on the CeO2 and NH3 contacted with the sulfates, which followed the L–H mechanism at 200 °C on C–P–S and C–S. The adsorption and activation of NO and NH3 over C–P occurred at the same active sites, which obeyed the E–R mechanism at 200 °C. C–P–S possessed the best catalytic activity because of the appropriate surface acidity and redox property, and more than 80% conversion of NOx was obtained at 220–450 °C.

Graphical abstract

CeO2 modified by H2SO4 (C–S), H3PO4 (C–P) and H2SO4 + H3PO4 (C–P–S) was prepared and used for selective catalytic reduction of NOx by NH3. The presence of sulfate species over C–S and C–P–S contributed to the formation of surface acidity. CeO2 modified by phosphoric acid favored excellent oxidation ability.


Sulfates Phosphates Surface acidity Redox property Mechanism 



This work is supported by the National Natural Science Foundation of China (Nos. 21307047 and 51509083) and Henan Key Scientific Research Projects (Nos. 18A610002 and 16A610005).

Supplementary material

11164_2018_3635_MOESM1_ESM.docx (6.1 mb)
Supplementary material 1 (DOCX 6204 kb)


  1. 1.
    C. Niu, X.Y. Shi, F.D. Liu, K. Liu, L.J. Xie, Y. You, H. He, Chem. Eng. J. 294, 254 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Xu, X.S. Li, M. Crocker, Z.S. Zhang, A.M. Zhu, C. Shi, J. Mol. Catal. A: Chem. 378, 82 (2013)CrossRefGoogle Scholar
  3. 3.
    T. Yu, J. Wang, M.Q. Shen, J.Q. Wang, W. Li, Chem. Eng. J. 264, 845 (2015)CrossRefGoogle Scholar
  4. 4.
    W.C. Yu, X.D. Wu, Z.C. Si, D. Weng, Appl. Surf. Sci. 283, 209 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Tounsi, S. Djemal, C. Petitto, G. Delahay, Appl. Catal. B Environ. 107, 158 (2011)CrossRefGoogle Scholar
  6. 6.
    Y.J. Kim, H.J. Kwon, I. Heo, I.S. Nam, B.K. Cho, J.W. Choung, M.S. Cha, G.K. Yeo, Appl. Catal. B Environ. 126, 9 (2012)CrossRefGoogle Scholar
  7. 7.
    Z.M. Liu, S.X. Zhang, J.H. Li, L.L. Ma, Appl. Catal. B Environ. 144, 90 (2014)CrossRefGoogle Scholar
  8. 8.
    N.Y. Topsøe, Science 265, 1217 (1994)CrossRefGoogle Scholar
  9. 9.
    L. Chen, J.H. Li, M.F. Ge, Environ. Sci. Technol. 44, 9590 (2010)CrossRefGoogle Scholar
  10. 10.
    K.Z. Li, J.H. Li, Appl. Catal. B Environ. 140, 483 (2013)Google Scholar
  11. 11.
    Y. Peng, R.Y. Qu, X.Y. Zhang, J.H. Li, Chem. Commun. 49, 6215 (2013)CrossRefGoogle Scholar
  12. 12.
    L.S. Cheng, R.T. Yang, N. Chen, J. Catal. 164, 70 (1996)CrossRefGoogle Scholar
  13. 13.
    Q.L. Zhang, Z.X. Song, P. Ning, X. Liu, H. Li, J.J. Gu, Catal. Commun. 59, 170 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Qi, R.T. Yang, Appl. Catal. B Environ. 44, 217 (2003)CrossRefGoogle Scholar
  15. 15.
    C. Larese, M. López Granados, R. Mariscal, J.L.G. Fierro, P.S. Lambrou, A.M. Efstathiou, Appl. Catal. B Environ. 59, 13 (2005)CrossRefGoogle Scholar
  16. 16.
    S.J. Yang, Y.F. Guo, H.Z. Chang, L. Ma, Y. Peng, Z. Qu, N.Q. Yan, C.Z. Wang, J.H. Li, Appl. Catal. B Environ. 136–137, 19 (2013)CrossRefGoogle Scholar
  17. 17.
    Z.B. Wu, R.B. Jin, Y. Liu, H.Q. Wang, Catal. Commun. 9, 2217 (2008)CrossRefGoogle Scholar
  18. 18.
    F.D. Liu, K. Asakura, H. He, W.P. Shan, X.Y. Shi, C.B. Zhang, Appl. Catal. B Environ. 103, 369 (2011)CrossRefGoogle Scholar
  19. 19.
    Z.C. Si, D. Weng, X.D. Wu, Z.R. Ma, J. Ma, R. Ran, Catal. Today 201, 122 (2013)CrossRefGoogle Scholar
  20. 20.
    Z.C. Si, D. Weng, X.D. Wu, R. Ran, Z.R. Ma, Catal. Commun. 17, 146 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Gao, X.B. Chen, H.Q. Wang, J.S. Mo, Z.B. Wu, Y. Liu, X.L. Weng, J. Colloid Interface Sci. 394, 515 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Larese, F.C. Galisteo, M.L. Granados, R. Mariscal, J. Fierro, M. Furió, R.F. Ruiz, Appl. Catal. B Environ. 40, 305 (2013)CrossRefGoogle Scholar
  23. 23.
    F. Li, Y.B. Zhang, D.H. Xiao, D.Q. Wang, X.Q. Pan, X.G. Yang, Chem. Cat. Chem. 2, 1416 (2010)Google Scholar
  24. 24.
    F. Li, D.H. Xiao, Y.B. Zhang, D.Q. Wang, X.Q. Pan, X.G. Yang, Chin. J. Catal. 31, 938 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Yu, Z.C. Si, L. Chen, X.D. Wu, D. Weng, Appl. Catal. B Environ. 163, 223 (2015)CrossRefGoogle Scholar
  26. 26.
    Z.C. Si, D. Weng, X.D. Wu, J. Yang, B. Wang, Catal. Commun. 11, 1045 (2010)CrossRefGoogle Scholar
  27. 27.
    S.X. Yang, W.P. Zhu, Z.P. Jiang, Z.X. Chen, J.B. Wang, Appl. Surf. Sci. 252, 8499 (2006)CrossRefGoogle Scholar
  28. 28.
    X. Gao, Y. Jiang, Y. Zhong, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 174, 734 (2010)CrossRefGoogle Scholar
  29. 29.
    C.X. Liu, L. Chen, H.Z. Chang, L. Ma, Y. Peng, H. Arandiyan, J.H. Li, Catal. Commun. 40, 145 (2013)CrossRefGoogle Scholar
  30. 30.
    J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319 (2000)CrossRefGoogle Scholar
  31. 31.
    Y.S. Eom, S.H. Jeon, T.A. Ngo, J. Kim, T.G. Lee, Catal. Lett. 121, 219 (2008)CrossRefGoogle Scholar
  32. 32.
    L. Chen, J.H. Li, M.F. Ge, Chem. Eng. J. 170, 531 (2011)CrossRefGoogle Scholar
  33. 33.
    X.J. Yao, Z. Wang, S.H. Yu, F.M. Yang, L. Dong, J. Mol. Catal. A: Chem. 542, 282 (2017)CrossRefGoogle Scholar
  34. 34.
    L. Zhang, W.X. Zou, K.L. Ma, Y. Cao, Y. Xiong, S.G. Wu, C.J. Tang, F. Gao, L. Dong, J. Phys. Chem. C 119, 1155 (2015)CrossRefGoogle Scholar
  35. 35.
    Z.M. Liu, S.X. Zhang, J.H. Li, J.Z. Zhu, L.L. Ma, Appl. Catal. B Environ. 158, 11 (2014)CrossRefGoogle Scholar
  36. 36.
    Y. Jiang, X. Gao, Y.X. Zhang, W.H. Wu, H. Song, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 274, 270 (2014)CrossRefGoogle Scholar
  37. 37.
    N.Y. Topsoe, H. Topsoe, J.A. Dumesic, J. Catal. 151, 226 (1995)CrossRefGoogle Scholar
  38. 38.
    I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catal. Today 114, 3 (2006)CrossRefGoogle Scholar
  39. 39.
    W.S. Hu, Y.H. Zhang, S.J. Liu, C.H. Zheng, X. Gao, I. Nova, E. Tronconi, Appl. Catal. B Environ. 206, 449 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Zhang, Y.G. Zou, Y. Peng, Chin. J. Catal. 38, 160 (2017)CrossRefGoogle Scholar
  41. 41.
    X.S. Du, X. Gao, K.Z. Qiu, Z.Y. Luo, K.F. Cen, J. Phys. Chem. C 119, 1905 (2015)CrossRefGoogle Scholar
  42. 42.
    Y. Peng, J.H. Li, L. Chen, J.H. Chen, J. Han, H. Zhang, W. Han, Environ. Sci. Technol. 46, 2864 (2012)CrossRefGoogle Scholar
  43. 43.
    T. Yi, Y.B. Zhang, J.W. Li, X.G. Yang, Chin. J. Catal. 37, 300 (2016)CrossRefGoogle Scholar
  44. 44.
    R.Y. Qu, X. Gao, K.F. Cen, J.H. Li, Appl. Catal. B Environ. 142–143, 290 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Henan Province Key Laboratory of Water Pollution Control and Rehabilitation TechnologyHenan University of Urban ConstructionPingdingshanPeople’s Republic of China
  2. 2.College of Environmental and Safety EngineeringShenyang University of Chemical TechnologyShenyangPeople’s Republic of China
  3. 3.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  4. 4.College of Environmental Science and EngineeringChina West Normal UniversityNanchongPeople’s Republic of China
  5. 5.College of Materials and Chemical EngineeringChongqing University of Arts and SciencesChongqingPeople’s Republic of China

Personalised recommendations