Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 1, pp 119–125 | Cite as

Hyaluronan-assisted synthesis of silver nanoparticles and nanowires

  • Jin-Pei Deng
  • Shin-Hau Li
  • Sheng-Te Chang
  • Yang-Chia Shih
Article
  • 17 Downloads

Abstract

Silver nanowires (NWs) were successfully synthesized in high yield in cationic surfactant solutions of cetyltrimethylammonium bromide (CTAB) with hyaluronan (HA) additive. Most of the NWs had diameter of 10–30 nm and length of more than tens of microns. The carboxylate group of HA provides a stronger electrostatic interaction with the cationic heads of CTAB and promotes formation of lengthened cylindrical micelles. Silver ions were reduced by addition of ascorbic acid and heating, and the embryonic silver seeds promoted growth of silver NWs along the one-dimensional direction of the cylindrical micelles. Presence of any gold nanoparticles or nanorods in the solution can prominently inhibit the formation of silver seeds and decrease the yield of silver NWs.

Keywords

Silver nanowires Hyaluronan Gold nanoparticles 

References

  1. 1.
    C. Hwang, J. An, B.D. Choi, K. Kim, S.W. Jung, K.J. Baeg, M.G. Kim, K.M. Ok, J. Hong, J. Mater. Chem. C 4, 1441 (2016)CrossRefGoogle Scholar
  2. 2.
    J.P. Deng, W.C. Shih, C.Y. Mou, J. Phys. Chem. C 111, 9723 (2007)CrossRefGoogle Scholar
  3. 3.
    M.F. Cardinal, B. Rodríguez-González, R.A. Alvarez-Puebla, J. Pérez-Juste, L.M. Liz-Marzán, J. Phys. Chem. C 114, 10417 (2013)CrossRefGoogle Scholar
  4. 4.
    P.C. Hsu, D. Kong, S. Wang, H. Wang, A.J. Welch, H. Wu, Y. Cui, J. Am. Chem. Soc. 136, 10593 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.J. Ko, J.Y. Kim, H. Ko, Nano Lett. 15, 7933 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Azulai, E. Cohen, G. Markovich, Nano Lett. 12, 5552 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett. 2, 165 (2002)CrossRefGoogle Scholar
  8. 8.
    Y. Sun, Y. Xia, Adv. Mater. 14, 833 (2002)CrossRefGoogle Scholar
  9. 9.
    S. Chang, K. Chen, Q. Hua, Y. Ma, W. Huang, J. Phys. Chem. C 115, 7979 (2011)CrossRefGoogle Scholar
  10. 10.
    N. Xia, Y. Cai, T. Jiang, J. Yao, Carbohydr. Polym. 86, 956 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Shervani, Y. Yamamoto, Carbohydr. Res. 346, 651 (2011)CrossRefGoogle Scholar
  12. 12.
    N.Q. Hien, D.V. Phu, N.N. Duy, L.A. Uuoc, Carbohydr. Polym. 89, 537 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Gómez-Graña, B. Goris, T. Altantzis, C. Fernández-López, E. Carbó-Argibay, A. Guerrero-Martínez, N. Almora-Barrios, N. López, I. Pastoriza-Santos, J. Pérez-Juste, S. Bals, G.V. Tendeloo, L.M. Liz-Marzán, J. Phys. Chem. Lett. 4, 2209 (2013)CrossRefGoogle Scholar
  14. 14.
    J.P. Deng, C.W. Chen, W.C. Hsieh, C.H. Wang, C.Y. Hsu, J.H. Lin, Chem. Phys. Lett. 595–596, 127 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Bögels, J.G. Buijnster, S.A.C. Verhaegen, H. Meekes, P. Bennema, D. Bollen, J. Cryst. Growth 203, 554 (1999)CrossRefGoogle Scholar
  16. 16.
    K. Park, L.F. Drummy, R.A. Vaia, J. Mater. Chem. 21, 15608 (2011)CrossRefGoogle Scholar
  17. 17.
    W. Xiong, H. Liu, Y. Zhou, Y. Ding, X. Zhang, L. Jiang, ACS Appl. Mater. Interfaces 8, 12534 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryTamkang UniversityNew Taipei CityTaiwan
  2. 2.Department of BiotechnologyAsia UniversityTaichungTaiwan

Personalised recommendations