Advertisement

Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house

  • Ngoc Minh Chau Ha
  • Thi Huyen Nguyen
  • San-Lang Wang
  • Anh Dzung Nguyen
Article
  • 4 Downloads

Abstract

NPK nanofertilizer was prepared by loading nitrogen (N), phosphorous (P) and potassium (K) into chitosan nanoparticles. The chitosan nanoparticles were prepared via ionic gelation of tripolyphosphate and chitosan solution. The chitosan nanoparticles were characterized by SEM, TEM, zeta potential and size distribution. The results showed that size distribution was from 300 to 750 nm and zeta potential of around 50 mV. The released kinetics of nitrogen, phosphorous and potassium in nanofertilizer were also investigated for 240 h. The nanofertilizer was applied to coffee seedlings in a greenhouse condition. The results showed that the nanofertilizer enhanced uptake of nutrients, photosynthesis and growth of coffee plants. Application of the nanofertilizer improved 17.04% nitrogen, 16.31% phosphorous and 67.50% potassium content in the leaves of treated plots compared to the control; total chlorophyll content increased up to 30.68% and 71.7% of photosynthesis net rate. Application of nanofertilizer also enhanced leaf number, plant height and leaf area of the coffee seedlings. Using the nanofertilizer may be a potential way to enhance use efficiency of fertilizers for coffee.

Keywords

Nanofertilizers Chitosan nanoparticles Coffee Photosynthesis Chlorophylls 

Notes

Acknowledgements

The authors express to thank Ministry of Education and Training, Vietnam supported a grant for this work (Code: B2014-15-71) and a part of the grant by the Ministry of Science and Technology, Taiwan (NSC 102-2313-B-032-001-MY3).

References

  1. 1.
    B. Sun, L. Zhang, L. Yang, F. Zhang, D. Norse, Z. Zhu, Ambio 41, 370 (2012)CrossRefGoogle Scholar
  2. 2.
    M.M. Trenkel, Controlled release and stabilized fertilizer in agriculture (International Fertilizer Industry Association, Paris, 1997)Google Scholar
  3. 3.
    E. Corredor, P.S. Testillano, M. José Coronado, P. González-Melendi, R. Fernández-Pacheco, C. Marquina, M. Ricardo Ibarra, J.M. de la Fuente, D. Rubiales, A.P. de Luque, M. Carmen Risueño, BMC Plant Biol. 9, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    V. Ghormade, M.V. Deshpande, K.M. Paknikar, Biotechnol. Adv. 29, 792 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Huang, L. Wang, Y. Hou, L. Li, Agron. Sustain. Dev. 35, 369 (2015)Google Scholar
  6. 6.
    M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, A.S. Bris, ACS Nano 3, 3221 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Liu, R. Lal, Sci. Rep. 4(5686), 1 (2014)Google Scholar
  8. 8.
    T.N.V.K.V. Prasad, P. Sudahka, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. Raja Reddy, T.S. Sreeprasat, S.R. Panikkanvalappil, P. Thalappil, J. Plant Nutr. 35, 905 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Servin, W. Elmer, A. Mukherjee, R. De la Torre-Roche, H. Hamdi, J.C. White, P. Bindranban, C. Dimkpa, J. Nanopart. Res. 17, 92 (2015)CrossRefGoogle Scholar
  10. 10.
    J.C. Tarafdar, R. Raliya, H. Mahawar, I. Rathore, Agric. Res. 3, 257 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Wu, M. Liu, Carbohydr. Polym. 72, 240 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Zareabyaneth, M. Bayatvarkeshi, Environ. Earth Sci. 74, 3385 (2015)CrossRefGoogle Scholar
  13. 13.
    M.C. De Rosa, C. Monreal, M. Schitzer, R. Walsh, Y. Sultan, Nat. Nanotechnol. 5, 91 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Teodorescu, A. Lungu, P.O. Stanescu, C. Neamtu, Ind. Eng. Chem. Res. 48, 6527 (2009)CrossRefGoogle Scholar
  15. 15.
    E. Corradini, M.R. de Moura, L.H.C. Mattoso, Express Polym. Lett. 4, 509 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, A.S. Biris, ACS Nano 3, 3221 (2009)CrossRefGoogle Scholar
  17. 17.
    A.M.R. Abdel-Mawgoud, A.S. Tantawy, M.A. El-Nemr, Y.N. Sassine, Eur. J. Sci. Res. 39, 161 (2010)Google Scholar
  18. 18.
    C. Akimoto Tomiyama, K. Sakata, J. Yasaki, J. Yazaki, K. Nakamura, F. Fujii, K. Shimbo, K. Yamamoto, T. Sasaki, S. Kikuchi, N. Shibuya, E. Minami, Plant Mol. Biol. 52, 537 (2003)CrossRefGoogle Scholar
  19. 19.
    N.M. Alves, J.F. Mano, Int. J. Biol. Macromol. 43, 401 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Bitelli, M. Flury, G.S. Campbell, E.J. Nichols, Agric. For. Meteorol. 107, 167 (2001)CrossRefGoogle Scholar
  21. 21.
    C. Chao, Z. Gao, X. Qui, S. Hu, Molecules 18, 7239 (2013)CrossRefGoogle Scholar
  22. 22.
    A.G. Chmielewski, W. Migdal, J. Swietoslawski, U. Gryczka, T. Tarnowski, Radiat. Phys. Chem. 76, 1840 (2007)CrossRefGoogle Scholar
  23. 23.
    Z. Gou, R. Xing, S. Liu, Carbohydr. Polym. 71, 694 (2008)CrossRefGoogle Scholar
  24. 24.
    A. El Hadrami, L.R. Adam, I. El Hadrami, F. Daayf, Mar. Drugs. 8, 968 (2010)CrossRefGoogle Scholar
  25. 25.
    T.K.N. La, S.L. Wang, M.H. Dinh, M.L. Phung, T.V. Nguyen, M.D. Tran, A.D. Nguyen, J. Res. Chem. Intermed. 40, 2165 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Liu, R. Lal, Sci. Rep. 4(5686), 1 (2014)Google Scholar
  27. 27.
    M. Rinaudo, Prog. Polym. Sci. 31, 603 (2006)CrossRefGoogle Scholar
  28. 28.
    A.D. Nguyen, T.P.K. Vo, T.D. Tran, Carbohydr. Polym. 84, 751 (2011)CrossRefGoogle Scholar
  29. 29.
    T.V. Nguyen, T.T.H. Nguyen, S.L. Wang, T.P.K. Vo, A.D. Nguyen, Res. Chem. Intermed. 43(6), 2537 (2017).Google Scholar
  30. 30.
    K.L. Nge, N. Nitar, S. Chandrkrachang, W.F. Steven, Plant Sci. 170, 1185 (2006)CrossRefGoogle Scholar
  31. 31.
    R.G. Sarathchandra, S.N. Jaj, Crop. Prot. 23, 881 (2004)CrossRefGoogle Scholar
  32. 32.
    A.F.M.J. Uddin, F. Hashimoto, K. Shimizu, Sci. Hortic. 100, 127 (2004)CrossRefGoogle Scholar
  33. 33.
    H. Yin, X. Zhao, Y. Du, Carbohydr. Polym. 82, 1 (2010)CrossRefGoogle Scholar
  34. 34.
    V.S. Nguyen, M.H. Dinh, A.D. Nguyen, Biocatal. Agric. Biotechnol. 2, 289 (2013)Google Scholar
  35. 35.
    Q. Gan, T. Wang, C. Cochrane, P. McCarron, Colloids Surf. B 44(2–3), 65 (2005)CrossRefGoogle Scholar
  36. 36.
    S. Yoshida, S.D. Forno, Laboratory Manual for Physiological Studies of Rice (IRRI, Los Banos, 1976), p. 43Google Scholar
  37. 37.
    A. Ledezma-Delgadillo, R. Carrillo-Gonzalez, E. San Martin-Martinez, M.R. Jaime-Fonseca, M.A. Chacon-Lopez, Rev. Mex. Ing. Quim. 15, 423 (2016)Google Scholar
  38. 38.
    M.N.A. Hasaneen, H.M.M. Abdel-Aziz, D.M.A. El-Bialy, A.M. Omer, Afr. J. Biotechnol. 13(31), 3158 (2014)CrossRefGoogle Scholar
  39. 39.
    B.R.D. Santos, F.B. Bacalhau, T.D.S. Pereira, C.F. Souza, R. Faez, Carbohydr. Polym. 127, 340 (2015)CrossRefGoogle Scholar
  40. 40.
    P. Limpanavech, S. Chaiyasuta, R. Vongpromek, R. Pichyangkura, C. Khunwasi, S. Chadchanwan, Sci. Hort. 116, 65 (2008)CrossRefGoogle Scholar
  41. 41.
    D. Liu, E. Xing, Envron. Sci. Technol. 42, 5580 (2008)CrossRefGoogle Scholar
  42. 42.
    R. Liu, R. Lal, Sci. Rep. 4(5686), 1 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Biotechnology and EnvironmentTay Nguyen UniversityBuon Ma ThuotVietnam
  2. 2.Life Science Development CenterTamkang UniversityNew Taipei CityTaiwan

Personalised recommendations