Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 1, pp 77–90 | Cite as

Theoretical study of 5,10-diphenylindeno[2,1-a]indene (DPI) dyes for dye sensitized solar cells (DSSC)

  • Ken-Hao Chang
  • Chin-Kuen Tai
  • Likey Chen
  • Pao-Ling Yeh
  • Bo-Cheng WangEmail author
Article
  • 26 Downloads

Abstract

Six D-DPI-A (D-π-A) dyes combining various arylamine electron donors (diphenylamine and triphenylamine moieties) with a fixed π-linker (DPI) and a fixed electron acceptor (cyanoacrylic acid) were designed to determine their electronic, photophysical and photovoltaic properties. It was found that electron-donating ability correlates positively with the energy of the highest occupied molecular orbital (EHOMO) of the electron donor moiety. Optimized structures and electronic properties (highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital (ELUMO), and energy difference (Eg) between HOMO and LUMO) were calculated by the density functional theory (DFT/B3LYP/6-31G(d)) method. Photovoltaic properties [electron injection driving force (ΔGinj)] and photophysical properties [oscillator strengths (f), selected absorption wavelengths (\(\lambda_{\text{abs}}^{\text{calc}}\)) and light harvesting efficiency related to longest absorption wavelength (\({\text{LHE}}_{{\lambda_{\text{longest}} }}\))] were calculated by the time-dependent density functional theory TD/BHandHLYP/6-31G(d) method. Both ΔGinj and longest absorption wavelength (λlongest) can be enhanced by increasing the electron-donating ability of the electron donor in these dyes. According to photophysical property analysis, λlongest is the intra-molecular charge transfer band which can be regarded as the HOMO to LUMO transition. The electron density of HOMO is localized at the electron donor and the π-conjugated linker (DPI) moiety. The electron density of LUMO is trapped at the π-linker (DPI) and the electron-acceptor moiety. It is concluded that the electron-donating ability of the electron donor strongly influences the photophysical properties of the DSSC.

Keywords

DSSC Electron injection driving force Light harvesting efficiency DPI dyes 

Notes

Acknowledgements

We thank the Ministry of Science and Technology for financially supporting this work. We are also grateful to the National Center for High-Performance Computing for computer time and facilities.

Supplementary material

11164_2018_3624_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)

References

  1. 1.
    G. Reginato, M. Calamante, A. Dessì, A. Mordini, M. Peruzzini, L. Zani, J. Organomet. Chem. 771, 117 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Venkateswararao, P. Tyagi, K.R. Justin Thomas, P.W. Chen, K.C. Ho, Tetrahedron 70, 6318 (2014)CrossRefGoogle Scholar
  3. 3.
    S.L. Chen, L.N. Yang, Z.S. Li, J. Power Sources 223, 86 (2013)CrossRefGoogle Scholar
  4. 4.
    W. Li, J. Wang, J. Chen, F.Q. Bai, H.X. Zhang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 1144 (2014)CrossRefGoogle Scholar
  5. 5.
    B. O’Regan, M. Grӓtzal, Nature 253, 24 (1991)Google Scholar
  6. 6.
    A. Hagfeldt, M. Grӓtzal, Acc. Chem. Res. 33, 269 (2000)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, H.B. Li, Y. Geng, S.Z. Wen, R.L. Zhong, Y. Wu, Q. Fu, Z.M. Su, Dyes Pigments 99, 127 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Manoharan, S. Anandan, Dyes Pigments 105, 223 (2014)CrossRefGoogle Scholar
  9. 9.
    M.J. Im, J. Park, Y.S. Gal, J.H. Moon, J.Y. Lee, S.H. Jin, Mater. Chem. Phys. 139, 319 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Srinivasa, C.R. Kumara, M.A. Reddya, K. Bhanuprakash, V.J. Rao, L. Giribabu, Synth. Met. 161, 96 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Morales-Acevedo, A. Mahmood, Sol. Energy 123, 127 (2016)CrossRefGoogle Scholar
  12. 12.
    D.D. Babu, S.R. Gachumale, S. Anandan, A.V. Adhikari, Dyes Pigments 112, 183 (2015)CrossRefGoogle Scholar
  13. 13.
    W. Fan, D. Tan, Q. Zhang, H. Wang, J. Mol. Graph. Model. 57, 62 (2015)CrossRefGoogle Scholar
  14. 14.
    C. Jia, Z. Wan, J. Zhang, Z. Li, X. Yao, Y. Shi, Spectrochim. Acta, Part A 86, 387 (2012)CrossRefGoogle Scholar
  15. 15.
    X. Chen, C. Jia, Z. Wan, J. Zhang, X. Yao, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 123, 282 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Ehret, L. Stuhl, M.T. Spitler, J. Phys. Chem. B 105, 9960 (2001)CrossRefGoogle Scholar
  17. 17.
    X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan, H. Tian, Tetrahedron 64, 345 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 107, 597 (2003)CrossRefGoogle Scholar
  19. 19.
    C.V. Kumar, D. Raptis, E.N. Koukaras, L. Sygellou, P. Lianos, Org. Electron. 25, 66 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Mishra, M.K.R. Fischer, P. Buerle, Angew. Chem. Int. Ed. 48, 2474 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, L. Sun, J. Phys. Chem. C 112, 11023 (2008)CrossRefGoogle Scholar
  22. 22.
    T. Marinado, K. Nonomura, J. Nissfolk, M.K. Karlsson, D.P. Hagberg, L. Sun, S. Mori, A. Hagfeldt, Langmuir 26, 2592 (2010)CrossRefGoogle Scholar
  23. 23.
    W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 22, 1915 (2010)CrossRefGoogle Scholar
  24. 24.
    D.P. Hagberg, J.H. Yum, H. Lee, F.D. Angelis, T. Marinado, K.M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, M.K. Nazeeruddin, J. Am. Chem. Soc. 130, 6259 (2008)CrossRefGoogle Scholar
  25. 25.
    G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, Chem. Commun. 16, 2198 (2009)CrossRefGoogle Scholar
  26. 26.
    X.Z. Zhu, H. Tsuji, A. Yella, A.S. Chauvin, M. Grӓtzal, E. Nakamura, Chem. Commun. 49, 582 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, H.B. Li, S.L. Sun, Y. Geng, Y. Wu, Z.M. Su, J. Mater. Chem. 22, 568 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Zhang, Y.H. Kan, H.B. Li, Y. Geng, Y. Wu, Z.M. Su, Dyes Pigments 95, 313 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, M. Bouachrine, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 232 (2014)CrossRefGoogle Scholar
  30. 30.
    W.L. Ding, D.M. Wang, Z.Y. Geng, X.L. Zhao, W.B. Xu, Dyes Pigments 98, 125 (2013)CrossRefGoogle Scholar
  31. 31.
    L.F. Liu, J.Z. Chen, Z.L. Ku, X. Li, H.W. Han, Dyes Pigments 106, 128 (2014)CrossRefGoogle Scholar
  32. 32.
    Z.Q. Wan, C.Y. Jia, L.L. Zhou, W.R. Huo, X.J. Yao, Y. Shi, Dyes Pigments 95, 41 (2012)CrossRefGoogle Scholar
  33. 33.
    X.F. Zang, Z.S. Huang, H.L. Wu, Z. Iqbal, L.Y. Wang, H. Meier, D. Cao, J. Power Sources 271, 455 (2014)CrossRefGoogle Scholar
  34. 34.
    C.J. Zhong, J.R. Gao, Y.H. Cui, T. Li, L. Han, J. Power Sources 273, 831 (2015)CrossRefGoogle Scholar
  35. 35.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, J.R. Cheeseman, M.A. Robb, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmzylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Ishida, M. Hasegawa, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, A. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millan, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannerberg, S. Dapprich, A.D. Daniels, J. Farkas, B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, GAUSSIAN 09, Revision (Gaussian Inc., Wallingford, 2009)Google Scholar
  36. 36.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)CrossRefGoogle Scholar
  37. 37.
    T. Helgaker, M. Jaszun´ski, K. Ruud, Chem. Rev. 99, 293 (1999)Google Scholar
  38. 38.
    I.H. Nayyar, E.R. Batista, S. Tretiak, A. Saxena, D.L. Smith, R.L. Martin, J. Phys. Chem. Lett. 2, 566 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Zhao, D.G. Truhlar, Theor. Chem. Accounts 120, 215 (2008)CrossRefGoogle Scholar
  40. 40.
    V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998)CrossRefGoogle Scholar
  41. 41.
    M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24, 669 (2003)CrossRefGoogle Scholar
  42. 42.
    S.I. Gorelsky, SWizard Program (University of Ottawa, Canada, 2013). http://www.sg-chem.net
  43. 43.
    W. Sang-aroona, S. Saekowb, V. Amornkitbamrung, J. Photochem. Photobiol., A 236, 35 (2012)CrossRefGoogle Scholar
  44. 44.
    J. Wang, H. Li, N.N. Ma, L.K. Yan, Z.M. Su, Dyes Pigments 99, 440 (2013)CrossRefGoogle Scholar
  45. 45.
    S.B. Novir, S.M. Hashemianzadeh, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 143, 20 (2015)CrossRefGoogle Scholar
  46. 46.
    U. Mehmood, I.A. Hussein, M. Daud, S. Ahmed, K. Harrabi, Dyes Pigments 118, 152 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ken-Hao Chang
    • 1
  • Chin-Kuen Tai
    • 1
  • Likey Chen
    • 2
  • Pao-Ling Yeh
    • 3
  • Bo-Cheng Wang
    • 1
  1. 1.Department of ChemistryTamkang UniversityTamsuiTaiwan
  2. 2.Material and Chemical Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan
  3. 3.General Education CenterSaint John’s UniversityTamsui, New Taipei CityTaiwan

Personalised recommendations