Research on Chemical Intermediates

, Volume 45, Issue 2, pp 581–598 | Cite as

Structural characterization, photoluminescence, computational studies and bioassay of newly synthesized N-(3-oxo-3-morpholino-1-phenyl-propyl) benzo sulfonamide with multifunctional application

  • Pamita AwasthiEmail author
  • Kirna Devi


N-(3-oxo-3-morpholino-1-phenyl-propyl) benzo sulfonamide (BMS) (C19H22N2O4S) has been synthesized and characterized by FT-IR, 1H and 13C NMR, and ESI-mass spectrometric methods. The 2-D NMR (COSY, HSQC, DEPT and TOCSY spectra) of BMS is recorded to study the correlation between protons and carbons. The optimized geometry, harmonic vibrational frequencies and infrared intensities are calculated using B3LYP/6-311++(2d,p) basis set on the Gaussian. 13C and 1H NMR chemical shifts are calculated using the gauge independent atomic orbital method with B3LYP/6-311++(2d,p) basis set. The detailed analysis of experimental NMR chemical shifts as well as IR vibrations is supported by quantum chemical calculations using the Gaussian approach. The HOMO and LUMO energy calculation and Mulliken charges were calculated by the DFT approach. The UV–Vis and photoluminescence study confirms the light emitting nature of the molecule. BMS showed better antimicrobial activities against resistant and non-resistant strains. Further, the anticancer activity of the compound is studied against the PC-3 cancer cell line in comparison to mitoxantrone. Comparative docking study of BMS with mitoxantrone and doxorubicin has been carried out on the p53 tumor suppressor-DNA complex. Effective binding is observed at ARG-248, which is an experimentally proved mutated site of the p53 protein.


Sulfonamide BMS PL p53 Antimicrobial activity Anticancer activity 



The authors thank University Grants Commission-Rajiv Gandhi National Fellowship for ST students, New Delhi, India (F1-17.1/2014-15/RGNF-2014-15-ST-HIM-84222/(SAIII/Website)) for giving the financial assistance. We would like to thank Director, NIT Hamirpur for providing infrastructure facilities. The facilities provided by the NMR Centre and computational lab, IIT Roorkee, Uttarakhand are highly acknowledged. Authors are thankful to Prof. Ritu Barthwal Department of Biotechnology IIT Roorkee for her NMR and computational discussion. The paper is the original research of the authors, and the work is also being filed as a patent with Indian Patent Application No. 201711026145.

Compliance with ethical standards

Conflict of interests

There is no conflict to declare.

Supplementary material

11164_2018_3620_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2306 kb)


  1. 1.
    S.S.A. Shah, G. Rivera, M. Ashfaq, Mini-Rev. Med. Chem. 13, 70 (2013)CrossRefGoogle Scholar
  2. 2.
    C.T. Supuran, Expert Opin. Investig. Drugs 12, 283 (2003)CrossRefGoogle Scholar
  3. 3.
    R. Mohan, M. Banerjee, A. Ray, T. Manna, L. Wilson, T. Owa, Biochem. 45, 5440 (2006)CrossRefGoogle Scholar
  4. 4.
    M.H. Hansen, L. Bastholm, I.S. Mathiasen, F. Elling, M. Jaattela, Cell Death Differ. 12, 1297 (2005)CrossRefGoogle Scholar
  5. 5.
    Y. Ozawa, N.H. Sugi, T. Watanabe, T. Nagasu, N. Koyanagi, K. Kitoh, Proc. 9th NCI-EORTC Ann. Oncol. Suppl. 7, 140 (1996)Google Scholar
  6. 6.
    C.H. Kesteren, R.A. Mathot, E. Raymond, J.P. Armand, C. Ditrich, H. Dumez, H. Roche, J.P. Droz, C. Punt, J.H. Schellas, J. Clin. Oncol. 20, 4065 (2002)CrossRefGoogle Scholar
  7. 7.
    S. Zimmerman, A. Innocenti, A. Casini, J.G. Ferry, A. Scozzafava, C.T. Supuran, Bioorganic Med. Chem. Lett. 14, 6001 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Mohammadpur, S. Safarian, S. Farahnak, S. Hasheminasl, N. Sheibani, J. Cell. Mol. Biol. 10, 41 (2012)Google Scholar
  9. 9.
    K. Fukuoka, J. Usuda, Y. Iwamoto, H. Fukumoto, T. Nakamura, T. Yoneda, N. Narita, N. Saijo, K. Nishio, Invest. New Drugs 19, 219 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Mirian, A. Zarghi, S. Sadeghi, P. Tabaraki, M. Tavallaee, O. Dadrass, A.H. Sadeghi, Iran. J. Pharm. Res. 10, 741 (2011)Google Scholar
  11. 11.
    A.M. Badawi, S.H.E. Ali, D.A. Ismail, Aust. J. Basic Appl. Sci. 2, 301 (2008)Google Scholar
  12. 12.
    K. Tsukahara, T. Watanabe, N.H. Sugi, K. Yoshimatsu, H. Okayama, T. Nagasu, Am. Soc. Pharma. Exp. Ther. Mol. Pharmacol. 60, 1254 (2001)Google Scholar
  13. 13.
    U. Kalidhar, R. Kumar, A. Kaur, Res. J. Pharma. Bio. Chem. Sci. 3, 1072 (2012)Google Scholar
  14. 14.
    S.K.C. Lee, M.S. Park, C. Im, Korean J. Physiol. Pharma. 15, 423 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Yokoi, J. Kuromitsu, T. Kawai, Mol. Cancer Ther. 1, 275 (2002)Google Scholar
  16. 16.
    D. Rai, R.K. Singh, Indian J. Chem. 50, 931 (2011)Google Scholar
  17. 17.
    F.A. Davis, Am. Chem. Soc. 71(24), 8993 (2006)Google Scholar
  18. 18.
    P. Awasthi, P. Sharma, S. Kumar, J. Biomol. Struct. Dyn. 34, 1061 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Eichhorn, C. Hiller, K. Hirschfelder, M. Frank, T. Efferth, Cancer Genom. Proteom. 10, 35 (2013)Google Scholar
  20. 20.
    R.K. Mahajan, V.P. Patial, P. Sharma, Indian J. Chem. 41B, 2635 (2002)Google Scholar
  21. 21.
    M. Mansoor, G. George, S. Ramalingam, S. Periandy, V.G. Krishnan, J. Mol. Struct. 1099, 463 (2015)CrossRefGoogle Scholar
  22. 22.
    P. Awasthi, S. Dogra, R. Barthwal, J. Photochem. Photobiol. B: Biol. 127, 78 (2013)CrossRefGoogle Scholar
  23. 23.
    T. Mosmann, J. Immunol. Methods 65, 55 (1983)CrossRefGoogle Scholar
  24. 24.
    A.L. Barry, M.B. Coyle, C. Thornberry, E.H. Gerlach, R.W. Hawkinson, J. Clin. Microbiol. 10, 885 (1979)Google Scholar
  25. 25.
    V.K. Rastogi, M.A. Palafox, V. Kumar, H.P. Mital, R. Sharma, Sci. Access 2, 150 (2004)Google Scholar
  26. 26.
    M. Silverstein, G. C. Basseler, C. Morill (Wiley, New York, 1981)Google Scholar
  27. 27.
    P.S. Raj, D. Shoba, S. Ramalingam, S. Periandy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 147, 293 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of TechnologyHamirpurIndia

Personalised recommendations