Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 2, pp 563–579 | Cite as

Role of nitrogen functional groups and manganese oxides on the reduction of NO over modified semi-coke catalyst at low temperature

  • Lu Yao
  • Shan Ren
  • Qingcai LiuEmail author
  • Jie Yang
  • Lijun Jiang
  • Chao Fan
  • Dayong Chen
Article
  • 66 Downloads

Abstract

Modified semi-coke catalysts loaded melamine (M) and/or manganese oxides (MnOx) were prepared by the impregnation method for the reduction of NO at low temperature. A fixed-bed reactor, XRD, Raman and XPS were used for the catalytic activity measurement and characterization of modified semi-coke catalysts. The highest denitration rate of 5M–10Mn–ASC was 91.6% at 225 °C and kept the highest level within 200–300 °C. The results of characterization revealed the changes of nitrogen functional groups on the surface of modified semi-coke catalysts. Pyrrolic-like nitrogen (N-5) appeared on the surface of semi-coke catalysts only with M. After loading M and MnOx simultaneously, quaternary nitrogen (N–Q) appeared and the contribution of nitro type complexes (–NO2) declined sharply. During the whole reaction process, melamine as a nitrogen species source can adjust both the contribution of acidic and basic functional groups. The acidic functional groups, like C=O and N–Q, could provide active sites to adsorb NH3 and the basic functional groups, like pyridinic-like nitrogen (N-6) and N-5, could adsorb some O2 and NO. Meanwhile, the sufficient oxygen vacancies and surface chemical oxygen provided by MnOx reinforced denitration efficiency of modified semi-coke catalysts as well. Different modified conditions would result in the changing roles of nitrogen functional groups constantly, which could be beneficial to improve the denitration rate. Based on the results of catalytic activity measurements and analysis of different characterization, the possible denitrification mechanism of modified semi-coke catalysts was built.

Keywords

Semi-coke-based catalyst Low-temperature denitration Melamine Manganese oxides Mechanism 

Notes

Acknowledgements

The authors gratefully acknowledged the National Natural Science Foundation of China (No. 51604048), Fund of Chongqing Science and Technology (No. csct2016shmszx20015) and China Postdoctoral Science Foundation (2017T100683) and Chongqing Postdoctoral Science Foundation (xmT2017002).

References

  1. 1.
    Y. Chen, Study on Low-Temperature Selective Catalytic Reduction of NO x in Flue Gas by CeO 2 –Fe 2 O 3 /ACF Catalyst (Hunan University, Hunan, 2009)Google Scholar
  2. 2.
    Z. Liang, X. Ma, H. Lin, Y. Tang, Appl. Energy 88, 1120 (2011)CrossRefGoogle Scholar
  3. 3.
    L.S. Wang, B.C. Huang, Y.X. Su, G.Y. Zhou, K.L. Wang, H.C. Luo, D.Q. Ye, Chem. Eng. J. 192, 232 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Muñiz, G. Marbán, A.B. Fuertes, Appl. Catal. B Environ. 27(27–36), 27 (2000)CrossRefGoogle Scholar
  5. 5.
    X. Fan, F. Qiu, H. Yang, W. Tian, T. Hou, X. Zhang, Catal. Commun. 12, 1298 (2011)CrossRefGoogle Scholar
  6. 6.
    I. Nova, L. Lietti, L. Casagrande, L. Dall’Acqua, E. Giamello, P. Forzatti, Appl. Catal. B Environ. 17, 245 (1998)CrossRefGoogle Scholar
  7. 7.
    I. Giakoumelou, C. Fountzoula, C. Kordulis, S. Boghosian, J. Catal. 239, 1 (2006)CrossRefGoogle Scholar
  8. 8.
    M.A. Zamudio, N. Russo, D. Fino, Ind. Eng. Chem. Res. 50, 6668 (2011)CrossRefGoogle Scholar
  9. 9.
    F.T. You, G.W. Yu, Y. Wang, Z.J. Xing, X.J. Liu, J. Li, Fuel Process. Technol. 413, 387 (2017)Google Scholar
  10. 10.
    J.P. Sousa, M.F. Pereira, J.L. Figueiredo, Fuel Process. Technol. 106, 727 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Yoshikawa, A. Yasutake, I. Mochida, Appl. Catal. A Gen. 173, 239 (1998)CrossRefGoogle Scholar
  12. 12.
    X. Tang, J. Hao, H. Yi, J. Li, Catal. Today 126, 406 (2007)CrossRefGoogle Scholar
  13. 13.
    B.K. Pradhan, N.K. Sandle, Carbon 37, 1323 (1999)CrossRefGoogle Scholar
  14. 14.
    T. Valdés-Solís, G. Marbán, A.B. Fuertes, Appl. Catal. B Environ. 46, 261 (2003)CrossRefGoogle Scholar
  15. 15.
    J.P. Wang, Z. Yan, L.L. Liu, Y. Chen, Z.T. Zhang, X.D. Wang, Appl. Surf. Sci. 313, 660 (2014)CrossRefGoogle Scholar
  16. 16.
    J.P. Wang, Z. Yan, L.L. Liu, Y.Y. Zhang, Z.T. Zhang, X.D. Wang, Appl. Surf. Sci. 309, 1 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Wang, H. Liu, Z.H. Huang, F. Kang, Chem. Eng. J. 256, 101 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.P. Wan, W.R. Zhao, Y. Tang, L. Li, Appl. Catal. B Environ. 148, 114 (2014)CrossRefGoogle Scholar
  19. 19.
    P.R. Ettireddy, N. Ettireddy, T. Boningari, J. Catal. 292, 53 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Stanciulescu, G. Caravaggio, A. Dobri, Appl. Catal. B Environ. 123, 229 (2012)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Sheng, Y.F. Hu, J.M. Xue, Environ. Technol. 33, 2421 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Min, E.D. Park, M.K. Ji, Appl. Catal. A Gen. 327, 261 (2007)CrossRefGoogle Scholar
  23. 23.
    J.L. Figueiredo, M.F.R. Pereira, Catal. Today 150, 2 (2010)CrossRefGoogle Scholar
  24. 24.
    R.S. Rathore, D.K. Srivastava, A.K. Agarval, N. Verma, J. Hazard. Mater. 173, 211 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Bashkova, T.J. Bandosz, J. Colloid Interface Sci. 333, 97 (2009)CrossRefGoogle Scholar
  26. 26.
    R.J.J. Jansen, H.V. Bekkum, Carbon 32, 1507 (1994)CrossRefGoogle Scholar
  27. 27.
    J. Bimer, P.D. Sałbut, S. Berłozecki, J.P. Boudou, E. Broniek, T. Siemieniewska, Fuel 77, 519 (1998)CrossRefGoogle Scholar
  28. 28.
    P. Burg, P. Fydrych, D. Cagniant, G. Nanse, J. Bimer, A. Jankowska, Carbon 40, 1521 (2002)CrossRefGoogle Scholar
  29. 29.
    A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T. Bandosz, Carbon 42, 469 (2004)CrossRefGoogle Scholar
  30. 30.
    H.P. Boehm, Catalytic properties of nitrogen-containing carbons, in Carbon Materials for Catalysis, ed. by P. Serp, J.L. Figuetredo (Wiley, Hoboken, 2009), p. 219Google Scholar
  31. 31.
    Q.Y. Li, Y.Q. Hou, X.J. Han, Z.G. Huang, Q.Q. Guo, D.K. Sun, J.D. Liu, J. Fuel Chem. Technol. 42, 487 (2014)CrossRefGoogle Scholar
  32. 32.
    J.Z. Jiao, S.H. Li, B.C. Huang, Acta Phys. Chem. 7, 1383 (2015)Google Scholar
  33. 33.
    X.M. Zhang, Y.Q. Deng, P. Tian, Appl. Catal. B Environ. 191, 179 (2016)CrossRefGoogle Scholar
  34. 34.
    Y.P. Shi, Studies on the Microstructure and Properties of Carbon Fibers by Raman Spectroscopy (Donghua University, Shanghai, 2010)Google Scholar
  35. 35.
    M. Bowden, D.J. Gardiner, J.M. Southall, D.L. Gerrard, Carbon 31, 1057 (1993)CrossRefGoogle Scholar
  36. 36.
    I.M. Robinson, M. Zakikhani, R.J. Day, R.J. Young, C. Galiotis, J. Mater. Sci. Lett. 6, 1212 (1987)CrossRefGoogle Scholar
  37. 37.
    M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J. Benoit, J. Schreiber, O. Chauvet, Chem. Commun. 16, 1450 (2001)CrossRefGoogle Scholar
  38. 38.
    J.Y. Lee, S.H. Hong, S.P. Cho, Curr. Appl. Phys. 6, 996 (2006)CrossRefGoogle Scholar
  39. 39.
    X. Lu, C. Song, C.C. Chang, Ind. Eng. Chem. Res. 53, 11601 (2014)CrossRefGoogle Scholar
  40. 40.
    L.Y. Wang, X.X. Cheng, Z.Q. Wang, C.Y. Ma, Y.K. Qin, Appl. Catal. B Environ. 201, 636 (2017)CrossRefGoogle Scholar
  41. 41.
    T. Boningari, P.R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C.A. McDonald, P.G. Smirniotis, J. Catal. 325, 145 (2015)CrossRefGoogle Scholar
  42. 42.
    M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon, Chem. Mater. 15, 395 (2003)CrossRefGoogle Scholar
  43. 43.
    F.D. Liu, H. Hong, J. Phys. Chem. C 114, 16929 (2010)CrossRefGoogle Scholar
  44. 44.
    S.J. Li, X.X. Wang, S. Tan, Y. Shi, W. Li, Fuel 191, 511 (2017)CrossRefGoogle Scholar
  45. 45.
    F. Kapteijna, J.A. Moulijna, S. Matznerb, H.P. Boehmb, Carbon 37, 1143 (1999)CrossRefGoogle Scholar
  46. 46.
    H.F. Gorgulho, F. Goncalves, M.F.R. Pereira, J.L. Figueiredo, Carbon 47, 2032 (2009)CrossRefGoogle Scholar
  47. 47.
    P. Nowicki, R. Pietrzak, H. Wachowska, Energy Fuels 24, 1197 (2010)CrossRefGoogle Scholar
  48. 48.
    R. Pietrzak, Fuel 88, 1871 (2009)CrossRefGoogle Scholar
  49. 49.
    J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, Appl. Catal. B Environ. 125, 398 (2012)CrossRefGoogle Scholar
  50. 50.
    P. Vinke, M. Eijk, M. Verbree, A.F. Voskamp, H. Bekkum, Carbon 32, 675 (1994)CrossRefGoogle Scholar
  51. 51.
    W. Shen, Z. Li, Y. Liu, Recent Pat. Chem. Eng. 1, 27 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Matzner, H.P. Boehm, Carbon 36, 1697 (1998)CrossRefGoogle Scholar
  53. 53.
    J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, Catal. Today 176, 383 (2011)CrossRefGoogle Scholar
  54. 54.
    B. Thirupathi, P.G. Smirniotis, J. Catal. 288, 74 (2012)CrossRefGoogle Scholar
  55. 55.
    Z.H. Chen, Q. Yang, H. Li, X.H. Li, L.F. Wang, S.C. Tsang, J. Catal. 276, 56 (2010)CrossRefGoogle Scholar
  56. 56.
    S. Ponce, M.A. Pena, J.L.G. Fierro, Appl. Catal. B Environ. 24, 193 (2000)CrossRefGoogle Scholar
  57. 57.
    Y.L. Fu, Y.F. Zhang, G.Q. Li, J. Zhang, Y.J. Guo, J. Energy Inst. 90, 813 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Resources and Environmental ScienceChongqing UniversityChongqingChina
  2. 2.College of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations