Advertisement

Aerobic alcohol oxidation catalyzed by CuO-rectorite/TEMPO in water

  • Wanghui Liu
  • Jianhong Yang
  • Jun Cai
Article
  • 9 Downloads

Abstract

An environmentally benign CuO-rectorite was prepared by calcining the co-precipitation product of Cu2+ with an acid-activated rectorite at pH 6. It could be well dispersed in water and used as a co-catalyst with TEMPO to selectively aerobically oxidize alcohols to aldehydes. The conversion of most primary benzylic alcohols was very high under optimized conditions. Interestingly, the oxidation protocol also allowed highly selective transformation of benzylic alcohols containing a phenolic hydroxyl group into the corresponding aldehydes. Additionally, very little copper was leached from the catalyst during the catalytic reaction. CuO-rectorite could be reused by centrifugation and washed with acetonitrile and water. At the same time, its catalytic activity remained high.

Keywords

CuO-rectorite TEMPO Aldehyde Selective transformation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 31270616) and the Key Laboratory of Fermentation Engineering (Ministry of Education) Open Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11164_2018_3618_MOESM1_ESM.docx (10.3 mb)
The method of determining copper content of CuO-REC, HPLC analysis of CuO-REC-catalyzed alcohol oxidation (Fig S1-S21) and spectroscopic measurement data (13C NMR and 1H NMR) of the isolated products (Figs. S22–S53) are given in a supplementary file (DOCX 10573 kb).

References

  1. 1.
    R.A. Sheldon, I.W.C.E. Arends, A. Dijksman, Catal. Today 57, 157 (2000)CrossRefGoogle Scholar
  2. 2.
    T. Mallat, A. Baiker, Catal. Today 19, 247 (1994)CrossRefGoogle Scholar
  3. 3.
    M. Musawir, P.N. Davey, G. Kelly, I.V. Kozhevnikov, Chem. Commun. 12, 1414 (2003)CrossRefGoogle Scholar
  4. 4.
    M.Z. Zhao, J. Li, Z.G. Song, R. Desmond, D.M. Tschaen, E.J.J. Grabowski, P.J. Reider, Tetrahedron Lett. 39, 5323 (1998)CrossRefGoogle Scholar
  5. 5.
    A. Kumar, N. Jain, S.M.S. Chauhan, Synth. Commun. 34, 2835 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Velusamy, T. Punniyamurthy, Org. Lett. 6, 217 (2004)CrossRefGoogle Scholar
  7. 7.
    M.F. Semmelhack, C.R. Schmid, D.A. Cortés, C.S. Chou, J. Am. Chem. Soc. 106, 3374 (1984)CrossRefGoogle Scholar
  8. 8.
    P. Gamez, I.W.C.E. Arends, J. Reedijk, R.A. Sheldon, Chem. Commun. 19, 2414 (2003)CrossRefGoogle Scholar
  9. 9.
    E.T.T. Kumpulainen, A.M.P. Koskinen, Chem. Eur. J. 15, 10901 (2009)CrossRefGoogle Scholar
  10. 10.
    J.M. Hoover, S.S. Stahl, J. Am. Chem. Soc. 133, 16901 (2011)CrossRefGoogle Scholar
  11. 11.
    J.M. Hoover, J.E. Steves, S.S. Stahl, Nat. Protoc. 7, 1161 (2012)CrossRefGoogle Scholar
  12. 12.
    J.M. Hoover, B.L. Ryland, S.S. Stahl, J. Am. Chem. Soc. 135, 2357 (2013)CrossRefGoogle Scholar
  13. 13.
    J.M. Hoover, B.L. Ryland, S.S. Stahl, ACS Catal. 3, 2599 (2013)CrossRefGoogle Scholar
  14. 14.
    X.M. Xie, S.S. Stahl, J. Am. Chem. Soc. 137, 3767 (2015)CrossRefGoogle Scholar
  15. 15.
    B.L. Ryland, S.S. Stahl, Angew. Chem. Int. Ed. 53, 8824 (2014)CrossRefGoogle Scholar
  16. 16.
    J.E. Steves, S.S. Stahl, J. Am. Chem. Soc. 135, 15742 (2013)CrossRefGoogle Scholar
  17. 17.
    G.Y. Yang, J.P. Ma, W. Wang, J.F. Zhao, X.S. Lin, L.P. Zhou, X.Q. Gao, Catal. Lett. 112, 83 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Taher, D.W. Kim, I.-M. Lee, RSC Adv. 7, 17806 (2017)CrossRefGoogle Scholar
  19. 19.
    S.C. Chen, S.N. Lu, F. Tian, N. Li, H.Y. Qian, A.J. Cui, M.Y. He, Q. Chen, Catal. Commun. 95, 6 (2017)CrossRefGoogle Scholar
  20. 20.
    B.R. Kim, J.S. Oh, J. Kim, C.Y. Lee, Catal. Lett. 146, 734 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Samanta, S. Das, P.K. Samanta, S. Dutta, P. Biswas, RSC Adv. 3, 19455 (2013)CrossRefGoogle Scholar
  22. 22.
    H. Zhao, Q.R. Chen, L. Wei, Y.Y. Jiang, M.Z. Cai, Tetrahedron 71, 8725 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Gupta, P. Sharma, M. Gupta, R. Gupta, J. Chem. Sci. 127, 1485 (2015)CrossRefGoogle Scholar
  24. 24.
    L.C. Li, R. Matsuda, I. Tanaka, H. Sato, P. Kanoo, H.J. Jeon, M.L. Foo, A. Wakamiya, Y. Murata, S. Kitagawa, J. Am. Chem. Soc. 136, 7543 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.C. Son, V.D. Makwana, A.R. Howell, S.L. Suib, Angew. Chem. Int. Ed. 113, 22 (2001)CrossRefGoogle Scholar
  26. 26.
    C. Lucarelli, A. Vaccari, Green Chem. 13, 1941 (2011)CrossRefGoogle Scholar
  27. 27.
    U.R. Pillai, E. Sahle-Demessie, Appl. Catal. A Gen. 245, 103 (2003)CrossRefGoogle Scholar
  28. 28.
    G. Nagendrappa, Appl. Clay Sci. 53, 106 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.C. Guo, J.F. Zhao, J.X. Xu, W. Wang, F.S. Tian, G.Y. Yang, M.P. Song, J. Nat. Gas Chem. 16, 210 (2007)CrossRefGoogle Scholar
  30. 30.
    K.G. Bhattacharyya, S.S. Gupta, Desalination 272, 66 (2011)CrossRefGoogle Scholar
  31. 31.
    W.P. Gates, J.S. Anderson, M.D. Raven, G.J. Churchman, Appl. Clay Sci. 20, 189 (2002)CrossRefGoogle Scholar
  32. 32.
    C.O. Ijagbemi, M.-H. Baek, D.-S. Kim, J. Hazard. Mater. 174, 746 (2010)CrossRefGoogle Scholar
  33. 33.
    D.S. Tong, Y.M. Zheng, W.H. Yu, L.M. Wu, C.H. Zhou, Appl. Clay Sci. 100, 123 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Komadel, M. Janek, J. Madejová, A. Weekes, C. Breen, Faraday Trans. 93, 4207 (1997)CrossRefGoogle Scholar
  35. 35.
    A. Harrane, R. Meghabar, M. Belbachir, Int. J. Mol. Sci. 3, 790 (2002)CrossRefGoogle Scholar
  36. 36.
    Sh Sohrabnezhad, A. Pourahmad, T. Salavatiyan, Appl. Phys. A 122, 111 (2016)CrossRefGoogle Scholar
  37. 37.
    N.F. Khusnun, A.A. Jalil, S. Triwahyono, C.N.C. Hitam, N.S. Hassan, F. Jamian, W. Nabgan, T.A.T. Abdullah, M.J. Kamaruddin, D. Hartanto, Powder Technol. 327, 170 (2018)CrossRefGoogle Scholar
  38. 38.
    P. Natkański, A. Rokicińska, A. Wach, M. Drozdek, B. Dudek, L. Lityńska-Dobrzyńsk, P. Kuśtrowski, RSC Adv. 6, 100373 (2016)CrossRefGoogle Scholar
  39. 39.
    J.P. Espinós, J. Morales, A. Barranco, A. Caballero, J.P. Holgado, A.R. González-Elipe, J. Phys. Chem. B 106, 6921 (2002)CrossRefGoogle Scholar
  40. 40.
    J.J. Teo, Y. Chang, H.C. Zeng, Langmuir 22, 7369 (2006)CrossRefGoogle Scholar
  41. 41.
    B.H. Lipshutz, M. Hageman, J.C. Fennewald, R. Linstadt, E. Slack, K. Voigtritter, Chem. Commun. 50, 11378 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Hatefi-Ardakani, S. Saeednia, Z. Pakdin-Parizi, M. Rafeezadeh, Res. Chem. Intermed. 42, 7223 (2016)CrossRefGoogle Scholar
  43. 43.
    G. Lagaly, Clay Miner. 16, 1 (1981)CrossRefGoogle Scholar
  44. 44.
    T.X. Bui, H. Choi, Chemosphere 80, 681 (2010)CrossRefGoogle Scholar
  45. 45.
    S.G. Babu, P.A. Priyadarsini, R. Karvembu, Appl. Catal. A Gen. 392, 218 (2011)CrossRefGoogle Scholar
  46. 46.
    H.E.B. Lempers, R.A. Sheldon, J. Catal. 175, 62 (1998)CrossRefGoogle Scholar
  47. 47.
    C. Hammond, Green Chem. 19, 2711 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Samanta, S. Das, P.K. Samanta, S. Dutta, P. Biswas, RSC Adv. 3, 19455 (2013)CrossRefGoogle Scholar
  49. 49.
    S.D. McCann, S.S. Stahl, Acc. Chem. Res. 48, 1756 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Environmental and Safety EngineeringChangzhou UniversityChangzhouChina
  2. 2.Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei University of TechnologyWuhanChina

Personalised recommendations