Research on Chemical Intermediates

, Volume 45, Issue 2, pp 533–548 | Cite as

Effects of graphene oxide incorporation on the mat structure and performance of carbon nanotube composite membranes

  • Huimin Huang
  • Jiayi Sheng
  • Feiyue QianEmail author
  • Feng Zhou
  • Shiqian Gao
  • Xiaofang Shen


The novel composite membranes were prepared using multi-walled carbon nanotubes (MWCNTs) alone or incorporating graphene oxide (GO) via vacuum filtration-assisted method. The structure and chemical composition of the mats atop the nylon microfiltration membranes were characterized, and a dynamic filtration process was employed to evaluate the performance of the membranes. Results showed that the intra-bundle type of pore in the size range of 20–30 nm dominated in the porous MWCNT mats, and hydroxylated MWCNTs were stacked in a fluffier structure with stronger hydrophilic behavior, as compared to the pristine ones. Although the lamellar-like mats without visible defects resulted in a lower water permeability and higher filtration resistance of MWCNT/GO membranes, the convoluted and lengthy pathways for water transfer increased their equilibrium adsorption capacities for small molecules of fulvic acid, as suggested by the pseudo-second-order kinetics fitting. In all, the obtained experimental evidence would be instructive to optimize the design of composite membranes for application in water purification.


Carbon nanotubes Graphene oxide Mat structure Water permeability Adsorptive filtration 



This study was supported by the National Natural Science Foundation of China (51608341, 41701545), and the Natural Science Foundation of Jiangsu Province, China (BK20150284). The authors also acknowledge support from the funding project for the Innovation and Entrepreneurship doctorate holders of Jiangsu Province, China.

Supplementary material

11164_2018_3617_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2479 kb)


  1. 1.
    B. Pan, B. Xing, Environ. Sci. Technol. 42, 9005 (2008)CrossRefGoogle Scholar
  2. 2.
    N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Res. Chem. Intermediat. 42, 9817 (2015)Google Scholar
  3. 3.
    A.G. Goncalves, J.J. Órfão, M.F. Pereira, J. Hazard. Mater. 239–240, 167 (2012)CrossRefGoogle Scholar
  4. 4.
    X. Fan, J. Restivo, J.J.M. Órfão, M.F.R. Pereira, A.A. Lapkin, Chem. Eng. J. 241, 66 (2014)CrossRefGoogle Scholar
  5. 5.
    P. Oleszczuk, B. Pan, B.S. Xing, Environ. Sci. Technol. 43, 9167 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Engel, B. Chefetz, Environ. Pollut. 213, 90 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Alimohammady, M. Jahangiri, F. Kiani, H. Tahermansouri, Res. Chem. Intermediat. 44, 69 (2017)CrossRefGoogle Scholar
  8. 8.
    G.S. Ajmani, H.H. Cho, T.E.A. Chalew, K.J. Schwab, J.G. Jacangelo, H. Huang, Water Res. 59, 262 (2014)CrossRefGoogle Scholar
  9. 9.
    L.A. Luongo, X.J. Zhang, J. Hazard. Mater. 178, 356 (2010)CrossRefGoogle Scholar
  10. 10.
    W.S. Hung, Q.F. An, M.D. Guzman, H.Y. Lin, S.H. Huang, W.R. Liu, C.C. Hu, K.R. Lee, J.Y. Lai, Carbon 68, 670 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Trakakis, D. Tasis, C. Aggelopoulos, J. Parthenios, C. Galiotis, K. Papagelis, Compos. Sci. Technol. 77, 52 (2013)CrossRefGoogle Scholar
  12. 12.
    G.S. Ajmani, D. Goodwin, K. Marsh, D.H. Fairbrother, K.J. Schwab, J.G. Jacangelo, H. Huang, Water Res. 46, 5645 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, J. Zhu, H. Huang, H.H. Cho, J. Membr. Sci. 479, 165 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Kundu, Y. Wang, W. Xia, M. Muhler, J. Phys. Chem. C 112, 16869 (2008)CrossRefGoogle Scholar
  15. 15.
    K. Yang, X. Zhu, B. Chen, J. Mater. Chem. A 5, 20316 (2017)CrossRefGoogle Scholar
  16. 16.
    Á. Kukovecz, R. Smajda, Z. Kónya, I. Kiricsi, Carbon 45, 1696 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, J. Ma, J. Zhu, N. Ye, X. Zhang, H. Huang, Water Res. 92, 104 (2016)CrossRefGoogle Scholar
  18. 18.
    H.M. Hegab, L. Zou, J. Membr. Sci. 484, 95 (2015)CrossRefGoogle Scholar
  19. 19.
    W. Hummer, R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  20. 20.
    X. Chen, M. Qiu, H. Ding, K. Fu, Y. Fan, Nanoscale 8, 5696 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Smajda, Á. Kukovecz, Z. Kónya, I. Kiricsi, Carbon 45, 1176 (2007)CrossRefGoogle Scholar
  22. 22.
    L.F. Dumée, K. Sears, J. Schütz, N. Finn, C. Huynh, S. Hawkins, M. Duke, S. Gray, J. Membr. Sci. 351, 36 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, D. Jiang, Compos. Part A Appl. Sci. 43, 469 (2012)CrossRefGoogle Scholar
  24. 24.
    X. Yang, J. Lee, L. Yuan, S.-R. Chae, V.K. Peterson, A.I. Minett, Y. Yin, A.T. Harris, Carbon 59, 160 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Liu, L. Yu, C.N. Ong, J. Xie, Nano Res. 9, 1983 (2016)CrossRefGoogle Scholar
  26. 26.
    T.A. Barbari, J. Membr. Sci. 72, 304 (1992)CrossRefGoogle Scholar
  27. 27.
    J. Jin, J.S. Gao, H. Qin, P. Liu, J. Mater. Chem. A 3, 6649 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Karanfil, M. Kitis, J.E. Kilduff, A. Wigton, Environ. Sci. Technol. 33, 3217 (1999)CrossRefGoogle Scholar
  29. 29.
    K. Yang, B. Xing, Environ. Pollut. 157, 1095 (2009)CrossRefGoogle Scholar
  30. 30.
    F. Wang, S. Ma, Y. Si, L. Dong, X. Wang, J. Yao, H. Chen, Z. Yi, W. Yao, B. Xing, Carbon 114, 671 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Khaled, Res. Chem. Intermediat. 41, 9817 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouPeople’s Republic of China
  2. 2.National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization TechnologySuzhouPeople’s Republic of China

Personalised recommendations