Synthesis of ZnO sunscreen composite using lamellar self-assembly 6-PGME as template
- 36 Downloads
Abstract
This paper mainly investigated the controllable preparation of well-dispersed ZnO nanoparticles by a surfactant-assisted method which selected laminated 6-polyglycerol monostearate (6-PGME) supermicelle as template. Typically, nano-ZnO particles confined in 6-PGME (6-PGME-ZnO) exhibited promising ultraviolet (UV) absorption with a blue-shift in comparison with the conventional bulk ZnO. Notably, the as-prepared 6-PGME-ZnO particles could be easily dispersed in sweet almond, jojoba oil and/or evening primrose oil as sunscreen agent. The physicochemical properties of 6-PGME-ZnO sample were further characterized to elucidate its relationship with adsorption capacity. This work might provide an alternative and green route for the development of ZnO-based nanomaterials, which have remarkable potential application in anti-UV fields.
Keywords
Surfactant-assisted method 6-Polyglycerol monostearate Nano-ZnO particles Anti-UV fieldsNotes
Acknowledgements
This work was supported by the National Key R&D Program of China (2017YFB 0308701), the Dalian Municipal Science and Technology Plan Project (no. 2015A11GX044) and China Postdoctoral Science Foundation (2017M610426).
References
- 1.K. Anand, S. Varghese, Powder Technol. 271, 187 (2015)CrossRefGoogle Scholar
- 2.D.Z. Wang, C.B. Cao, F.Q. Ji, H.S. Zhu, J. Colloid Interface Sci. 290, 196 (2005)CrossRefGoogle Scholar
- 3.Y.M. Chen, H.W. Jia, Mater. Lett. 132, 389 (2014)CrossRefGoogle Scholar
- 4.R. Zhao, X.C. Li, X.D. Zhang, J. Disper. Sci. Technol. 35, 1369 (2014)CrossRefGoogle Scholar
- 5.M. Mazilu, V. Musat, P. Innocenzi, Particul. Sci. Technol. 30, 32 (2012)CrossRefGoogle Scholar
- 6.S. Iravani, H. Korbekandi, S.V. Mirmohammadi, Res. Pharm. Sci. 9, 385 (2014)Google Scholar
- 7.P. Sutradhar, M. Debbarma, M. Saha, Met. Org. Nano-Met. Chem. 46, 1622 (2015)CrossRefGoogle Scholar
- 8.Y.D. Liu, J. Goebla, Y.D. Yin, Chem. Soc. Rev. 42, 2610 (2013)CrossRefGoogle Scholar
- 9.F.D. Han, Y.J. Bai, R. Liu, Adv. Energy Mater. 1, 798 (2011)CrossRefGoogle Scholar
- 10.B.H. Zhang, X.Y. Yu, C.Y. Ge, Chem. Commun. 46, 9188 (2010)CrossRefGoogle Scholar
- 11.Z.H. Wang, X.Y. Chen, J.W. Liu, Solid State Commun. 130, 585 (2004)CrossRefGoogle Scholar
- 12.C.H. Kuo, M.H. Huang, J. Am. Chem. Soc. 130, 12815 (2008)CrossRefGoogle Scholar
- 13.R. Wahab, S.G. Ansari, Y.S. Kim, Mater. Res. Bull. 42, 1640 (2007)CrossRefGoogle Scholar
- 14.Y.J. Wang, A.S. Angelatos, F. Caruso, Chem. Mater. 20, 848 (2008)CrossRefGoogle Scholar
- 15.J.M. Wu, H. Yan, X.H. Zhang, J. Colloid Interface Sci. 324, 167 (2008)CrossRefGoogle Scholar
- 16.D.G. Angelescu, L.M. Magno, C. Stubenrauch, J. Phys. Chem. C 114, 22069 (2010)CrossRefGoogle Scholar
- 17.D. Buceta, Y. Piñeiro, C.V. Vázquez, Catalysts 4, 356 (2014)CrossRefGoogle Scholar
- 18.H. Ohde, F. Hunt, C.M. Wai, Chem. Mater. 13, 4130 (2001)CrossRefGoogle Scholar
- 19.R. Ahmad, R. Kumar, J. Disper. Sci. Technol. 32, 737 (2011)CrossRefGoogle Scholar
- 20.T.T. Wong, K.T. Lau, W.Y. Tama, J.S. Leng, Compos. Struct. 132, 1056 (2015)CrossRefGoogle Scholar
- 21.C.L. Hsu, S.J. Chang, Y.R. Lin, Chem. Commun. 28, 3571 (2005)CrossRefGoogle Scholar
- 22.R.K. Soni, M.P. Navas, J. Nanoeng. Nanomanuf. 3, 1 (2013)CrossRefGoogle Scholar
- 23.X.L. Hu, X.D. Shen, H.T. Li, Thin Solid Films 558, 134 (2014)CrossRefGoogle Scholar
- 24.X.L. Hu, Y. Masuda, T. Ohji, Appl. Surf. Sci. 255, 6823 (2009)CrossRefGoogle Scholar
- 25.C.P. Tan, M. Nakajima, J. Sci. Food Agric. 85, 121 (2005)CrossRefGoogle Scholar
- 26.J. Mansur, M. Breder, M. Mansur, An. Bras. Dermatol. 61, 121 (1986)Google Scholar
- 27.R. Zhao, X.C. Li, X.D. Zhang, J. Disper. Sci. Technol. 35, 1369 (2014)CrossRefGoogle Scholar
- 28.F.C. Wang, A.G. Marangoni, J. Colloid Interface Sci. 483, 394 (2016)CrossRefGoogle Scholar