Advertisement

Ultrasonic route synthesis, characterization and electrochemical study of graphene oxide and reduced graphene oxide

  • Maryam Sabbaghan
  • Hossein Charkhan
  • Masoumeh Ghalkhani
  • Javad Beheshtian
Article

Abstract

In this study, an efficient route for graphene oxide (GO) and reduced GO (RGO) synthesis was developed by using an ultrasonic probe and bath alternatively. RGO was prepared in acidic and neutral conditions. The products were characterized via FTIR, XRD, Raman spectroscopy, SEM and AFM. Well-exfoliated and smooth sheets without crumples are observed in GO. The RGO synthesized in acidic media had fewer layers and smaller crystallite size than that derived from neutral condition. Electrochemical investigations revealed higher effective surface area and better electrocatalytic activity for the RGO synthesized in acidic media (RGO1). The electrochemical sensing ability of the glassy carbon electrode modified with RGO1 (RGO1/GCE) towards dopamine (DA) was examined using cyclic and differential pulse voltammetry methods. The evaluation of the pH and scan rate effect on the DA electrochemical response confirmed a reversible electrocatalytic pH-dependent oxidation reaction, controlled by a mixed adsorption–diffusion process at the RGO1/GCE. Retained low disorders on the basal plane and high defect on the edge sites of the layers have provided high electrocatalytic activity for RGO1 that make it suitable for (bio) sensing applications.

Graphical abstract

Keywords

Ultrasonic Reduced graphene oxide Ultrasonic bath Ultrasonic probe Electrochemical 

References

  1. 1.
    W.C.I. Lahiri, R. Seelaboyina, Y.S. Kang, Crit. Rev. Solid State Mater. Sci. 35, 52 (2010)CrossRefGoogle Scholar
  2. 2.
    İ. Esirden, E. Erken, M. Kaya, F. Sen, Catal. Sci. Technol. 5, 4452 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Pamuk, B. Aday, F. Şen, M. Kaya, RSC Adv. 5, 49295 (2015)CrossRefGoogle Scholar
  4. 4.
    B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, F. Şen, Int. J. Hydrogen Energy 41(13), 5661 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, F. Şen, Chem. Sel. 1(5), 953 (2016)Google Scholar
  6. 6.
    B. Aday, Y. Yıldız, R. Ulus, S. Eris, F. Sen, M. Kaya, New J. Chem. 40, 748 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, F. Sen, Catal. Sci. Technol. 6, 2318 (2016)CrossRefGoogle Scholar
  8. 8.
    D. Zeynep, Y. Yunus, E. Sinan, S. Fatih, Appl. Catal. B Environ. 219, 511 (2017)CrossRefGoogle Scholar
  9. 9.
    D.C. Marcano, D.V. Kosynkln, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol. 4, 30 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, J. Am. Chem. Soc. 131, 3611 (2009)CrossRefGoogle Scholar
  12. 12.
    K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Nat. Mater. 13, 624 (2014)CrossRefGoogle Scholar
  13. 13.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  14. 14.
    X. Zhao, Y. Li, J. Wang, Z. Ouyang, J. Li, G. Wei, Z. Su, A.C.S. Appl, Mater. Interfaces 6, 4254 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Zhao, P. Zhang, Y. Chen, Z. Su, G. Wei, Nanoscale 7, 5080 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Li, P. Zhang, Z. Ouyang, M. Zhang, Z. Lin, J. Li, Z. Su, G. Wei, Adv. Funct. Mater. 26, 2122 (2016)CrossRefGoogle Scholar
  17. 17.
    X. Yu, W. Zhang, P. Zhang, Z. Su, Biosens. Bioelectron. 89, 72 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Quintana, J.I. Tapia, M. Prato, Beilstein J. Nanotechnol. 5, 2328 (2014)CrossRefGoogle Scholar
  19. 19.
    P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Mat. Res. 12, 1439 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Mallakpour, M. Dinari, M. Talebi, Colloid Polym. Sci. 293, 1827 (2015)CrossRefGoogle Scholar
  21. 21.
    K.S. Suslick, Science 247, 1439 (1990)CrossRefGoogle Scholar
  22. 22.
    H. Xu, B.W. Zeiger, K.S. Suslick, Chem. Soc. Rev. 42, 2555 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Yi, Z. Shen, S. Ma, X. Zhang, J. Nanopart. Res. 14, 1 (2012)CrossRefGoogle Scholar
  24. 24.
    D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, J. Mater. Chem. 21, 3428 (2011)CrossRefGoogle Scholar
  25. 25.
    W.W. Liu, J.N. Wang, Chem. Commun. 47, 6888 (2011)CrossRefGoogle Scholar
  26. 26.
    A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A.K. Stubos, Small 5, 1841 (2009)CrossRefGoogle Scholar
  27. 27.
    V. Štengl, J. Henych, J. Bludská, P. Ecorchard, M. Kormunda, Ultrason. Sonochem. 24, 65 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Noroozi, A. Zakari, S. Radiman, Z. Abdul Wahab, PLoS ONE 11, 1 (2016)CrossRefGoogle Scholar
  29. 29.
    T. Szabó, A. Szeri, I. Dékány, Carbon 43, 87 (2005)CrossRefGoogle Scholar
  30. 30.
    W.S.H. Jr, R.E. Offeman, J. Am. Chem. Soc. 80, 1329 (1958)CrossRefGoogle Scholar
  31. 31.
    T. Soltani, B.K. Lee, Ultrason. Sonochem. 10, 1 (2016)Google Scholar
  32. 32.
    A. Esmaeilia, M.H. Entezari, J. Colloid Interface Sci. 432, 19 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Abulizi, K. Okitsu, J.J. Zhu, Ultrason. Sonochem. 21, 1174 (2014)CrossRefGoogle Scholar
  34. 34.
    T. Soltani, B.K. Lee, J. Colloid Interface Sci. 486, 337 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Sabbaghan, J. Beheshtian, S.A.M. Mirsaeidi, Ceram. Int. 40, 7769 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Xu, B.W. Zeiger, K.S. Suslick, Chem. Soc. Rev. 42, 2555 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  38. 38.
    T. Soltani, B.K. Lee, Ultrason. Sonochem. 38, 693 (2017)CrossRefGoogle Scholar
  39. 39.
    S.S. Maktedar, G. Avashthi, M. Singh, Ultrason. Sonochem. S1350–4177(16), 30257 (2016)Google Scholar
  40. 40.
    D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008)CrossRefGoogle Scholar
  41. 41.
    C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 4, 24 (2010)Google Scholar
  42. 42.
    K. Krishnamoorthy, M. Veerapandian, L.H. Zhang, K.S. Yun, S.J. Kim, J. Phys. Chem. C 116, 17280 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Pan, I.A. Aksay, ACS Nano 5, 4073 (2011)CrossRefGoogle Scholar
  44. 44.
    A. Kumar, M. Khandelwal, J. Mater. Chem. A 2, 20345 (2014)CrossRefGoogle Scholar
  45. 45.
    T. Szabo, O. Berkesi, P. Forgo, K. Hosepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem. Mater. 18, 2740 (2006)CrossRefGoogle Scholar
  46. 46.
    I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related materials, Purdue University, IN, USA, Chapter 1 (2013).‏Google Scholar
  47. 47.
    S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen, R. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  48. 48.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  49. 49.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)CrossRefGoogle Scholar
  50. 50.
    G. Venugopal, K. Krishnamoorthy, R. Mohan, S.J. Kim, Mater. Chem. Phys. 50, 4228 (2012)Google Scholar
  51. 51.
    V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotechnol. 4, 25 (2009)CrossRefGoogle Scholar
  52. 52.
    M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Small 6, 179 (2010)CrossRefGoogle Scholar
  53. 53.
    T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’ Homme, L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008)CrossRefGoogle Scholar
  54. 54.
    L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, ACS Nano 4, 3182 (2011)CrossRefGoogle Scholar
  55. 55.
    M. Šimšíková, M. Barto, P. Kesa, T. Sikola, Mater. Chem. Phys. 177, 339 (2016)CrossRefGoogle Scholar
  56. 56.
    M.S. Goh, M. Pumera, Chem. Asian J. 5, 2355 (2010)CrossRefGoogle Scholar
  57. 57.
    M.S. Goh, M. Pumera, Anal. Chem. Electroanal. 82, 8367 (2010)CrossRefGoogle Scholar
  58. 58.
    C.T. Hsieh, W.Y. Lee, C.E. Lee, H. Teng, J. Phys. Chem. C 118, 15146 (2014)CrossRefGoogle Scholar
  59. 59.
    A. Ambrosi, A. Bonanni, M. Pumera, Nanoscale 3, 2256 (2011)CrossRefGoogle Scholar
  60. 60.
    X. Zhang, L.X. Ma, Y.C. Zhang, Electrochim. Acta 177, 118 (2015)CrossRefGoogle Scholar
  61. 61.
    A. Ramachandran, S. Panda, S.K. Yesodha, Sens. Actuators B 256, 488 (2018)CrossRefGoogle Scholar
  62. 62.
    X. Yan, Y. Gu, C. Li, B. Zheng, Y. Li, T. Zhang, Z. Zhang, M. Yang, Sens. Actuators B 257, 936 (2018)CrossRefGoogle Scholar
  63. 63.
    L. Huang, Y. Cao, D. Diao, Electrochim. Acta 262, 173 (2018)CrossRefGoogle Scholar
  64. 64.
    G. Xu, Z.A. Jarjes, V. Desprez, P.A. Kilmartin, J. Travas-Sejdic, Biosens. Bioelectron. 107, 184 (2018)CrossRefGoogle Scholar
  65. 65.
    B.J. Matsoso, B.K. Mutuma, C. Billing, K. Ranganathan, T. Lerotholi, G. Jones, N.J. Coville, Electrochim. Acta 286, 29 (2018)CrossRefGoogle Scholar
  66. 66.
    J. Zhang, L. Xu, B. Zhou, Y. Zhu, X. Jiang, J. Colloid Interface Sci. 513, 279 (2018)CrossRefGoogle Scholar
  67. 67.
    A. Burak, P. Handan, K. Muharrem, S. Fatih, J. Nanosci. Nanotechnol. 16, 6498 (2016)CrossRefGoogle Scholar
  68. 68.
    Y, Yunus, E, Esma, P. Handan, S. Hakan, Ş. Fatih, J. Nanosci. Nanotechnol. 16 (6), 5951-5958 (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of SciencesShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Institute for Advanced TechnologyShahid Rajaee Teacher Training UniversityLavizan, TehranIran

Personalised recommendations