Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 2, pp 453–469 | Cite as

Synthesis, structure, computational modeling, and biological activity of two novel bimesitylene derivatives

  • Lucian G. Bahrin
  • Lilia Clima
  • Sergiu Shova
  • Irina Rosca
  • Corneliu Cojocaru
  • Dana Bejan
  • Monica C. Sardaru
  • Narcisa Marangoci
  • Vasile Lozan
  • Alexandru RotaruEmail author
Article
  • 120 Downloads

Abstract

Tetrazole- and nitrile-containing bimesitylene derivatives with potential use in coordination chemistry were synthesized and characterized, and their structural particularities are discussed. For the bimesitylene bistetrazole derivative, geometry optimization was carried out by quantum-chemical calculations using density functional theory together with vibrational frequencies, natural bond orbitals, and highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) calculations. The newly synthesized bimesitylene derivatives were also evaluated for their antimicrobial activity against three different reference strains, namely Escherichia coli, Staphylococcus aureus, and Candida albicans.

Keywords

Bimesitylene derivatives Tetrazole DFT HOMO–LUMO Antimicrobial activity 

Notes

Acknowledgements

Financial support from the European Social Fund for Regional Development, Competitiveness Operational Programme Axis 1—Project “Novel Porous Coordination Polymers with Organic Ligands of Variable Length for Gas Storage,” POCPOLIG (ID P_37_707, Contract 67/08.09.2016, cod MySMIS: 104810) is gratefully acknowledged. The research related to computational chemistry is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 667387 WIDESPREAD 2-2014 SupraChem Lab.

References

  1. 1.
    J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102, 1359 (2002)CrossRefGoogle Scholar
  2. 2.
    C. Janiak, J.K. Vieth, New J. Chem. 34, 2366 (2010)CrossRefGoogle Scholar
  3. 3.
    J.N. Moorthy, R. Natarajan, P. Venugopalan, J. Org. Chem. 70, 8568 (2005)CrossRefGoogle Scholar
  4. 4.
    W. Lu, Z. Wei, D. Yuan, J. Tian, S. Fordham, H.C. Zhou, Chem. Mater. 26, 4589 (2014)CrossRefGoogle Scholar
  5. 5.
    J.N. Moorthy, R. Natarajan, G. Savitha, P. Venugopalan, Cryst. Growth Des. 6(4), 919 (2006)CrossRefGoogle Scholar
  6. 6.
    C.X. Wei, M. Bian, G.H. Gong, Molecules 20, 5528 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurin, M. Eddaoudi, Chem. Soc. Rev. 46, 3402 (2017)CrossRefGoogle Scholar
  8. 8.
    L.J. Chen, H.B. Yang, M. Shionoya, Chem. Soc. Rev. 46, 2555 (2017)CrossRefGoogle Scholar
  9. 9.
    L.R. Mingabudinova, V.V. Vinogradov, V.A. Milichko, E. Hey-Hawkins, A.V. Vinogradov, Chem. Soc. Rev. 45, 5408 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Eddaoudi, D.F. Sava, J.F. Eubank, K. Adila, V. Guillerm, Chem. Soc. Rev. 44, 228 (2015)CrossRefGoogle Scholar
  11. 11.
    Y.X. Tan, F. Wang, J. Zhang, Chem. Soc. Rev. 47, 2130 (2018)CrossRefGoogle Scholar
  12. 12.
    V. Karunakaran, V. Balachandran, Spectrochim. Acta A 98, 229 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Suvitha, S. Periandy, S. Boomadevi, M. Govindarajan, Spectrochim. Acta A 117, 216 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Karabacak, E. Sahin, M. Cinar, I. Erol, M. Kurt, J. Mol. Struct. 886, 148 (2008)CrossRefGoogle Scholar
  15. 15.
    I. Sidir, Y.G. Sidir, M. Kumalar, E. Tasal, J. Mol. Struct. 964, 134 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Cahiez, C. Chaboche, F. Mahuteau-Betzer, M. Ahr, Org. Lett. 7(10), 1943 (2005)CrossRefGoogle Scholar
  17. 17.
    M.F. Zaltariov, C. Cojocaru, S. Shova, I. Sacarescu, M. Cazacu, J. Mol. Struct. 1120, 302 (2016)CrossRefGoogle Scholar
  18. 18.
    O.M. Becker, A.D. MacKerell, B. Roux, M. Watanabe, Conformational Analysis, in Computational Biochemistry and Biophysics (Marcel Dekker, New York, 2001), pp. 69–90CrossRefGoogle Scholar
  19. 19.
    J. Frau, D. Glossman-Mitnik, Molecules 23(3), 559 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Vijayaraj, V. Subramanian, P.K. Chattaraj, J. Chem. Theory Comput. 5(10), 2744 (2009)CrossRefGoogle Scholar
  21. 21.
    C.M. Chang, Y.H. Ou, T.C. Liu, S.Y. Lu, M.K. Wang, SAR QSAR Environ. Res. 27(6), 441 (2016)CrossRefGoogle Scholar
  22. 22.
    L.L. Dai, S.F. Cui, G.L.V. Damu, C.H. Zhou, Chin. J. Org. Chem. 33, 224 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Roh, K. Vavrova, A. Hrabalek, Eur. J. Org. Chem. 31, 6101 (2012)CrossRefGoogle Scholar
  24. 24.
    C.G. Pierce, J.L. Lopez-Ribot, Expert Opin. Drug Discov. 8(9), 1177 (2013)CrossRefGoogle Scholar
  25. 25.
    B. Minea, N. Marangoci, D. Peptanariu, I. Rosca, V. Năstasă, A. Corciova, C.D. Varganici, A. Nicolescu, A. Fifere, A. Neamțu, M. Mareș, M. Bărboiu, M. Pinteală, New J. Chem. 40, 1765 (2016)CrossRefGoogle Scholar
  26. 26.
    CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.36.32, 2003Google Scholar
  27. 27.
    O.V. Dolomanov, L.J. Bourhis, R.J.J. Gildea, A.K. Howard, H. Puschmann, J. Appl. Cryst. 42, 339 (2009)CrossRefGoogle Scholar
  28. 28.
    G.M. Sheldrick, Acta Crystallogr. A A64, 112 (2008)CrossRefGoogle Scholar
  29. 29.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian Inc., Wallingford, CT, 2009)Google Scholar
  30. 30.
    R. Dennington, T. Keith, J. Millam, GaussView, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009)Google Scholar
  31. 31.
    E. Krieger, G. Vriend, Bioinformatics 30, 2981 (2014)CrossRefGoogle Scholar
  32. 32.
    J.J.P. Stewart, J. Mol. Model. 19, 1 (2013)CrossRefGoogle Scholar
  33. 33.
    D.F. Brown, D. Kothari, J. Clin. Pathol. 28, 779 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Lucian G. Bahrin
    • 1
  • Lilia Clima
    • 1
  • Sergiu Shova
    • 1
  • Irina Rosca
    • 1
  • Corneliu Cojocaru
    • 1
  • Dana Bejan
    • 1
  • Monica C. Sardaru
    • 1
  • Narcisa Marangoci
    • 1
  • Vasile Lozan
    • 1
    • 2
  • Alexandru Rotaru
    • 1
    Email author
  1. 1.“Petru Poni” Institute of Macromolecular ChemistryRomanian AcademyIasiRomania
  2. 2.Institute of Chemistry of Moldova Academy of SciencesChișinăuRepublic of Moldova

Personalised recommendations