Advertisement

Controllable synthesis of FeWO4/BiOBr in reactive ionic liquid with effective charge separation towards photocatalytic pollutant removal

  • Yi Zhang
  • Jun Di
  • Wei Tong
  • Xiaoliu Chen
  • Junze Zhao
  • Penghui Ding
  • Sheng Yin
  • Jiexiang Xia
  • Huaming Li
Article
  • 26 Downloads

Abstract

In the presence of reactive ionic liquid 1-octyl-3-methylimidazolium chloride [Omim]FeCl4, a new ferrous tungstate (FeWO4) was first synthesized by an ethylene glycol-assisted solvothermal process. Subsequently, FeWO4/BiOBr composites were prepared via an ionic liquid N-butyl-N-methylpiperidinium bromide [PP14]Br-assisted solvothermal process in mannitol solution. During the preparation process, [Omim]FeCl4 and [PP14]Br were used as reactants and templates. X-ray diffraction analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy, X-ray photoelectron spectroscopy, and other techniques were used to characterize the prepared FeWO4/BiOBr material. Besides, the photocatalytic activity of the FeWO4/BiOBr composites was evaluated by degradation of rhodamine B under visible-light irradiation, revealing that the best ratio of FeWO4 was 3 wt%. The photodegradation performance of FeWO4/BiOBr towards tetracycline was better than that of TiO2 (P25). The enhanced photocatalytic activity of the FeWO4/BiOBr composites derived from effective charge separation between FeWO4 and BiOBr. A possible mechanism for the enhanced visible-light photocatalytic performance of FeWO4/BiOBr was proposed.

Keywords

FeWO4 BiOBr Ionic liquid Charge separation Photocatalytic 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21676128, 21576123, 21476098, and 21471069).

Supplementary material

11164_2018_3610_MOESM1_ESM.docx (67 kb)
Supplementary material 1 (DOCX 66 kb)

References

  1. 1.
    A. Kubacka, M. Fernandez-García, G. Colon, Chem. Rev. 112, 1555 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Di, J. Xiong, H.M. Li, Z. Liu, Adv. Mater. 30, 1704548 (2018)CrossRefGoogle Scholar
  3. 3.
    Q.J. Xiang, B. Cheng, J.G. Yu, Angew. Chem. Int. Ed. 59, 11350 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Lanzafame, G. Centi, S. Perathoner, Chem. Soc. Rev. 43, 7562 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Di, J.X. Xia, H.M. Li, S.J. Guo, S. Dai, Nano Energy 41, 172 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Brigante, M. Avena, Microporous Mesoporous Mater. 225, 534 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Di, J.X. Xia, H.M. Li, Z. Liu, Nano Energy 35, 79 (2017)CrossRefGoogle Scholar
  8. 8.
    P.G. Hoertz, T.E. Mallouk, Inorg. Chem. 44, 6828 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Machida, T. Mitsuyama, K. Ikeue, J. Phys. Chem. B. 109, 7801 (2005)CrossRefGoogle Scholar
  10. 10.
    X.H. Xu, M. Wang, Y. Hou, J. Mater. Sci. Lett. 21, 1655 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Rengaraj, X.Z. Li, P.A. Tanner, J. Mol. Catal. A Chem. 247, 36 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, Q. Zhang, Z.G. Chen, H.M. Li, Appl. Catal. B Environ. 183, 254 (2016)CrossRefGoogle Scholar
  13. 13.
    C.M. Li, G. Chen, J.X. Sun, J.C. Rao, Z.H. Han, Y.D. Hu, W.N. Xing, C.M. Zhang, Appl. Catal. B Environ. 188, 39 (2016)CrossRefGoogle Scholar
  14. 14.
    J.H. Li, M.S. Han, Y. Guo, F. Wang, L.J. Meng, D.J. Mao, S.S. Ding, C. Sun, Appl. Catal. A Gen. 524, 105 (2016)CrossRefGoogle Scholar
  15. 15.
    F.X. Liang, C.W. Ge, T.F. Zhang, W.J. Xie, D.Y. Zhang, Y.F. Zou, K. Zheng, L.B. Luo, Nanophotonics 6, 494 (2017)CrossRefGoogle Scholar
  16. 16.
    K.X. Ren, K. Zhang, J. Liu, H.D. Luo, Y.B. Huang, X.B. Yu, Cryst. Eng. Commun. 14, 4384 (2012)CrossRefGoogle Scholar
  17. 17.
    Y.Y. Li, J.S. Wang, H.C. Yao, L.Y. Dang, Z.J. Li, J. Mol. Catal. A Chem. 334, 116 (2011)CrossRefGoogle Scholar
  18. 18.
    D.S. Bhachu, S.J.A. Moniz, S. Sathasivam, D.O. Scanlon, A. Walsh, S.M. Bawaked, M. Mokhtar, A.Y. Obaid, I.P. Parkin, J.W. Tang, C.J. Carmalt, Chem. Sci. 7, 4832 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, J. Am. Chem. Soc. 134, 4473 (2012)CrossRefGoogle Scholar
  20. 20.
    M.L. Guan, C. Xiao, J. Zhang, S.J. Fan, R. An, Q.M. Cheng, J.F. Xie, M. Zhou, B.J. Ye, Y. Xie, J. Am. Chem. Soc. 135, 10411 (2013)CrossRefGoogle Scholar
  21. 21.
    P.P. Xiao, L.L. Zhu, Y.C. Zhu, Y.T. Qian, J. Solid State Chem. 184, 1459 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Li, Y. Yu, L.Z. Zhang, Nanoscale 6, 8473 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Di, J.X. Xia, Y.P. Ge, L. Xu, H. Xu, M.Q. He, Q. Zhang, H.M. Li, J. Mater. Chem. A 2, 15864 (2014)CrossRefGoogle Scholar
  24. 24.
    G. Lu, F. Wang, X.J. Zou, J. Alloys Compd. 697, 417 (2017)CrossRefGoogle Scholar
  25. 25.
    D. Wu, S.T. Yue, W. Wang, T.C. An, G.Y. Li, H.Y. Yip, H.J. Zhao, P.K. Wong, Appl. Catal. B Environ. 192, 35 (2016)CrossRefGoogle Scholar
  26. 26.
    H.Q. Li, Y.M. Cui, W.S. Hong, L. Hua, D.L. Tao, Rare Met. 31, 604 (2012)CrossRefGoogle Scholar
  27. 27.
    J.X. Xia, Y.P. Ge, D.X. Zhao, J. Di, M.X. Ji, S. Yin, H.M. Li, R. Chen, CrystEngComm 17, 3645 (2015)CrossRefGoogle Scholar
  28. 28.
    L.Q. Ye, J.Y. Liu, Z. Jiang, T.Y. Peng, L. Zan, Appl. Catal. B Environ. 142, 1 (2013)Google Scholar
  29. 29.
    H.Q. Li, Y.M. Cui, X.C. Wu, L. Hua, W.S. Hong, Acta. Phys. Sin. 28, 1985 (2012)Google Scholar
  30. 30.
    L.Q. Ye, J.Y. Liu, C.Q. Gong, L.H. Tian, T.Y. Peng, L. Zan, ACS Catal. 2, 1677 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Cao, X. Li, H.L. Lin, B.Y. Xu, S.F. Chen, Appl. Surf. Sci. 266, 294 (2013)CrossRefGoogle Scholar
  32. 32.
    X.J. Wen, C. Zhang, C.G. Niu, L. Zhang, G.M. Zeng, X.G. Zhang, Catal. Commun. 90, 51 (2017)CrossRefGoogle Scholar
  33. 33.
    Y.M. Cui, Q.F. Jia, H.Q. Li, J.Y. Han, L.J. Zhu, S.G. Li, Y. Zou, J. Yang, Appl. Surf. Sci. 290, 233 (2014)CrossRefGoogle Scholar
  34. 34.
    Y.X. Zhou, H.B. Yao, Q. Zhang, J.Y. Gong, S.J. Liu, S.H. Yu, Inorg. Chem. 48, 1082 (2009)CrossRefGoogle Scholar
  35. 35.
    Z.G. Chen, H.J. Ma, J.X. Xia, J. Zeng, J. Di, S. Yin, L. Xu, H.M. Li, Ceram. Int. 42, 8997 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Guo, X. Zhou, Y. Lu, X. Zhang, S. Kuang, W.J. Hou, Solid State Chem. 196, 550 (2012)CrossRefGoogle Scholar
  37. 37.
    N. Goubard-Bretesche, O. Crosnier, G. Buvat, F. Favier, T. Brousse, J. Power Sources 326, 695 (2016)CrossRefGoogle Scholar
  38. 38.
    J. Di, C. Zhu, M.X. Ji, M.L. Duan, R. Long, C. Yan, K.Z. Gu, J. Xiong, Y.B. She, J.X. Xia, H.M. Li, Z. Liu, Angew. Chem. Int. Ed. (2018).  https://doi.org/10.1002/anie.201809492 CrossRefGoogle Scholar
  39. 39.
    F.Z. Wang, W.J. Li, S.N. Gu, H.D. Li, X.T. Liu, M.Z. Wang, A.C.S. Sustain, Chem. Eng. 4, 6288 (2016)Google Scholar
  40. 40.
    S. Bera, S.B. Rawal, H.J. Kim, W.I. Lee, ACS Appl. Mater. Interfaces 6, 9654 (2014)CrossRefGoogle Scholar
  41. 41.
    A.K. Chakraborty, M.R. Islam, M.H. Uddin, M.M. Rhaman, J. Clust. Sci. 29, 67 (2018)CrossRefGoogle Scholar
  42. 42.
    F.G. Sherif, L.J. Shyu, C.C. Greco, US, 5824832 (1998)Google Scholar
  43. 43.
    L. Lu, M.Y. Zhou, L. Yin, G.W. Zhou, T. Jiang, X.K. Wan, H.X. Shi, J. Mol. Catal. A Chem. 423, 379 (2016)CrossRefGoogle Scholar
  44. 44.
    K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Appl. Surf. Sci. 356, 333 (2015)CrossRefGoogle Scholar
  45. 45.
    I.M. Szilágyi, J. Madarász, G. Pokol, F. Hange, G. Szalontai, K. Varga-Josepovits, A.L. Tóth, J. Therm. Anal. Calorim. 97, 11 (2009)CrossRefGoogle Scholar
  46. 46.
    T.N. Kovacs, G. Pokol, F. Gaber, D. Nagy, T. Igricz, Mater. Res. Bull. 95, 563 (2017)CrossRefGoogle Scholar
  47. 47.
    C. Wang, G.L. Wang, X.F. Zhang, X.L. Dong, C. Ma, X.X. Zhang, H.C. Ma, M. Xue, RSC Adv. 8, 18419 (2018)CrossRefGoogle Scholar
  48. 48.
    H.W. Huang, X.W. Li, X. Han, N. Tian, Y.H. Zhang, T.R. Zhang, Phys. Chem. Chem. Phys. 5, 3673 (2015)CrossRefGoogle Scholar
  49. 49.
    A. Kumar, S. Kumar, A. Bahuguna, A. Kumar, V. Sharma, V. Krishnan, Mater. Chem. Front. 1, 2391 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Kumar, C. Schuerings, S. Kumar, A. Kumar, V. Krishnan, Beilstein J. Nanotechnol. 9, 671 (2018)CrossRefGoogle Scholar
  51. 51.
    J. Di, C. Yan, A.D. Handoko, Z.W. Seh, H.M. Li, Z. Liu, Mater. Today 21, 749 (2018)CrossRefGoogle Scholar
  52. 52.
    S. Bera, S.B. Rawal, H.J. Kim, W.I. Lee, ACS Appl. Mater. Inter 6, 9654 (2014)CrossRefGoogle Scholar
  53. 53.
    R.C.C. Costa, M.F.F. Lelis, L.C.A. Oliveira, J.D. Fabris, J.D. Ardisson, J. Hazard. Mater. 129, 171 (2006)CrossRefGoogle Scholar
  54. 54.
    S. George, S. Pokhrel, Z.X. Ji, B.L. Henderson, T. Xia, L.J. Li, J.I. Zink, A.E. Nel, L. Mädler, J. Am. Chem. Soc. 133, 11270 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yi Zhang
    • 1
  • Jun Di
    • 1
  • Wei Tong
    • 1
  • Xiaoliu Chen
    • 2
  • Junze Zhao
    • 1
  • Penghui Ding
    • 1
  • Sheng Yin
    • 1
  • Jiexiang Xia
    • 1
  • Huaming Li
    • 1
  1. 1.School of Chemistry and Chemical Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of the EnvironmentJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations