Research on Chemical Intermediates

, Volume 45, Issue 2, pp 401–423 | Cite as

Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: spectroscopic and molecular modeling approaches

  • Maral Hosseinzadeh
  • Shadi Nikjoo
  • Najme Zare
  • Delaram Delavar
  • Sima Beigoli
  • Jamshidkhan ChamaniEmail author


Through the incorporation of spectorescopic and molecular methods of modeling, the researchers investigated the interaction between Carbon Nanotubes (CNTs) and Human Serum Albumin (HSA). Fluorescence spectroscopy revealed the ability in both single-wall and multi-wall CNTs to quench the spectrum through a static quenching procedure obtained from the Stern–Volmer quenching constant (Ksv) at three different temperatures. The Ksv values of HSA–CNTs complexes were 1.96 × 105 M−1 and 2.44 × 105 M−1 that showed two different behaviors of interaction between HSA and CNTs. The Van’t Hoff equation was used to calculate thermodynamic parameters of Gibbs free energy (ΔG°), entropy (ΔS°) and enthalpy changes (ΔH°). The binding distances (r) between the donor (Trp residue of HSA) and acceptor (CNTs) was measured through the Förster theory of non-radiative energy transfer, and it was found to be less than 7 nm. The conformational changes of protein in the presence of CNTs were revealed through synchronous fluorescence spectra and three-dimensional fluorescence spectra analysis. The experimental results were confirmed through molecular modeling technique. Circular dichroism technique showed the secondary structure changes of HSA upon interaction with CNTs. The complex formation of HSA and CNTs was determined by the measurement of the electric conductivity. The molecular modeling technique determined the binding site of CNTs that were embedded in the subdomain IIIB of HSA. These analyses play a major role in drug delivery and pharmacodynamics studies for better understanding of nanotechnology levels.


HSA Fluorescence spectroscopy CNTs Molecular modeling 



Human serum albumin


Single-walled carbon nanotube


Multi-walled carbon nanotube



The financial support of the Research Council of the Mashhad Branch, Islamic Azad University is gratefully acknowledged. The authors thank Dr. Ljungburg for the English editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    G. Zhang, Q. Que, J. Pan, J. Guo, J. Mol. Struct. 881, 132 (2008)CrossRefGoogle Scholar
  2. 2.
    X. Wang, L. He, B. Liu, X. Wang, L. Xu, X. Wang, T. Sun, Int. J. Biol. Macromol. 107, 1066 (2018)CrossRefGoogle Scholar
  3. 3.
    I. Vayá, R. Pérez-Ruiz, V. Lhiaubet-Vallet, M.C. Jiménez, M.A. Miranda, Chem. Phys. Lett. 486, 147 (2010)CrossRefGoogle Scholar
  4. 4.
    J.J. Jing, B. Liu, X. Wang, X. Wang, L. He, X. Guo, M. Xu, Q. Li, B. Gao, B. Dong, Luminescence 32, 1056 (2017)CrossRefGoogle Scholar
  5. 5.
    Z. Sattar, H. Iranfar, A. Asoodeh, M.R. Saberi, M. Mazhari, J. Chamani, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 1089 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Yue, Y. Zhang, Y. Li, J. Zhu, J. Qin, X. Chen, J. Lumin. 128, 513 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Wang, X.-Y. Guo, L. Xu, B. Liu, L.-L. Zhou, X.-F. Wang, D. Wang, T. Sun, J. Photochem. Photobiol. B 175, 192 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Li, W. He, Y. Dong, F. Sheng, Z. Hu, Bioorg. Med. Chem. 14, 1431 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Tang, Y.-M. Qin, A.-H. Lin, X. Hu, G.-L. Zou, J. Pharm. Biomed. Anal. 39, 404 (2005)CrossRefGoogle Scholar
  10. 10.
    Y.H. Pang, L.L. Yang, S.M. Shuang, C. Dong, M. Thompson, J. Photochem. Photobiol. B 80, 139 (2005)CrossRefGoogle Scholar
  11. 11.
    R. Rajarao, R. Jayanna, V. Sahajwalla, B. Bhat, Proc. Mater. Sci. 5, 69 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Purohit, K. Purohit, S. Rana, R. Rana, V. Patel, Proc. Mater. Sci. 6, 716 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Laurenzi, S. Botti, A. Rufoloni, M. Santonicola, Proc. Eng. 88, 157 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Ahmed, A. Masud, Proc. Eng. 90, 129 (2014)CrossRefGoogle Scholar
  15. 15.
    R.M. Sankar, K.M.S. Meera, D. Samanta, D. Paradesi, A.B. Mandal, S.N. Jaisankar, Proc. Eng. 93, 43 (2014)CrossRefGoogle Scholar
  16. 16.
    M.-K. Yeh, N.-H. Tai, D.-S. Lin, Proc. Eng. 79, 244 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Roch, L. Stepien, T. Roch, I. Dani, C. Leyens, O. Jost, A. Leson, Synth. Met. 197, 182 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Chamani, J. Colloid Interface Sci. 299, 636 (2006)CrossRefGoogle Scholar
  19. 19.
    C.C. Ge, J.F. Du, L.N. Zhao, L.M. Wang, Y. Liu, D.H. Li, Y.L. Yang, R.H. Zhou, Y.L. Zhao, Z.F. Chai, C.Y. Chen, PNAS 108, 16968 (2011)CrossRefGoogle Scholar
  20. 20.
    W. Singsang, M. Panapoy, B. Ksapabutr, Energy Proc. 56, 439 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Shen, Z. Xia, Y. Wang, C.K. Poh, J. Lin, Proc. Eng. 93, 34 (2014)CrossRefGoogle Scholar
  22. 22.
    C.-M. Chen, P.-Y. Shih, Y.-W. Lin, J. Electron. Mater. 38, 193 (2009)CrossRefGoogle Scholar
  23. 23.
    O. Azimi, Z. Emami, H. Salari, J. Chamani, Molecules 16, 9792 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Kabiri, Z. Amiri-Tehranizadeh, A. Baratian, M.R. Saberi, J. Chamani, Molecules 17, 3114 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Zolfagharzadeh, M. Pirouzi, A. Asoodeh, M.R. Saberi, J. Chamani, J. Biomol. Struct. Dyn. 32, 1936 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Ding, W. Liu, Y. Li, L. Zhang, Y. Sun, J. Lumin. 130, 2013 (2010)CrossRefGoogle Scholar
  27. 27.
    Z. Chen, S. Qian, X. Chen, J. Chen, G. Zhang, G. Zeng, Microchim. Acta 177, 67 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Zhuang, H. Wang, K. Ding, J. Wang, L. Pan, Y. Lu, Q. Liu, C. Zhang, Chemosphere 144, 1050 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Zhang, J. Zhang, C. Tong, Y. Chen, S. Zhuang, W. Liu, J. Hazard. Mater. 263, 618 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Qian, D. Dan-Dan, C. Zhi-Juan, X. Qiong, J.-Y. Liang, L. Jian-Zhong, Chin. J. Anal. Chem. 38, 483 (2010)CrossRefGoogle Scholar
  31. 31.
    P. Naik, S. Chimatadar, S. Nandibewoor, J. Photochem. Photobiol. B 100, 147 (2010)CrossRefGoogle Scholar
  32. 32.
    Z. Chi, R. Liu, B. Yang, H. Zhang, J. Hazard. Mater. 180, 741 (2010)CrossRefGoogle Scholar
  33. 33.
    J.R. Lakowicz, Principles of fluorescence spectroscopy (Springer, Berlin, 2013)Google Scholar
  34. 34.
    S.M. Darwish, M.M.A. Teir, S.A. Makharza, M.M. Abu-hadid, J. Mol. Struct. 963, 122 (2010)CrossRefGoogle Scholar
  35. 35.
    Y. Huang, J. Yan, B. Liu, Z. Yu, X. Gao, Y. Tang, Y. Zi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 75, 1024 (2010)CrossRefGoogle Scholar
  36. 36.
    J.-L. Yuan, H. Liu, X. Kang, Z. Lv, G.-L. Zou, J. Mol. Struct. 891, 333 (2008)CrossRefGoogle Scholar
  37. 37.
    Z. Omidvar, K. Parivar, H. Sanee, Z. Amiri-Tehranizadeh, A. Baratian, M.R. Saberi, A. Asoodeh, J. Chamani, J. Biomol. Struct. Dyn. 29, 181 (2011)CrossRefGoogle Scholar
  38. 38.
    Y. Ni, S. Wang, S. Kokot, Anal. Chim. Acta 663, 139 (2010)CrossRefGoogle Scholar
  39. 39.
    U. Katrahalli, S. Jaldappagari, S.S. Kalanur, J. Lumin. 130, 211 (2010)CrossRefGoogle Scholar
  40. 40.
    F. Ding, W. Liu, X. Zhang, L.-J. Wu, L. Zhang, Y. Sun, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 75, 1088 (2010)CrossRefGoogle Scholar
  41. 41.
    Y. Ni, D. Lin, S. Kokot, Talanta 65, 1295 (2005)CrossRefGoogle Scholar
  42. 42.
    L.-N. Zhang, F.-Y. Wu, A.-H. Liu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 97 (2011)CrossRefGoogle Scholar
  43. 43.
    F. Ding, W. Liu, F. Liu, Z.-Y. Li, Y. Sun, J. Fluoresc. 19, 783 (2009)CrossRefGoogle Scholar
  44. 44.
    L. He, X. Wang, B. Liu, J. Wang, Y. Sun, E. Gao, S. Xu, J. Lumin. 131, 285 (2011)CrossRefGoogle Scholar
  45. 45.
    Y.-Z. Zhang, B. Zhou, Y.-X. Liu, C.-X. Zhou, X.-L. Ding, Y. Liu, J. Fluoresc. 18, 109 (2008)CrossRefGoogle Scholar
  46. 46.
    Z. Chen, L. Zhu, T. Song, J. Huang, Y. Han, Anal. Chim. Acta 635, 202 (2009)CrossRefGoogle Scholar
  47. 47.
    M.C. Tory, A.R. Merrill, Biochim. Biophys. Acta (BBA) Biomembr. 1564, 435 (2002)CrossRefGoogle Scholar
  48. 48.
    F. Wang, W. Huang, Y. Wang, J. Lumin. 128, 110 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Chen, D. Gao, Y. Tian, P. Ai, H. Zhang, A. Yu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 67, 1126 (2007)CrossRefGoogle Scholar
  50. 50.
    H. Yang, Y. Wang, Y. Wang, J. Li, X. Xiao, X. Tan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 1290 (2008)CrossRefGoogle Scholar
  51. 51.
    Y. Chen, J. Yang, Z. Wang, X. Wu, F. Wang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66, 686 (2007)CrossRefGoogle Scholar
  52. 52.
    F. Cui, L. Wang, Y. Cui, J. Pharm. Biomed. Anal. 43, 1033 (2007)CrossRefGoogle Scholar
  53. 53.
    J. Li, J. Kang, J. Lu, X. Li, J. Tang, H. Zhang, Y. Zhang, J. Lumin. 129, 906 (2009)CrossRefGoogle Scholar
  54. 54.
    X. Long, C. Zhang, J. Cheng, S. Bi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 69, 71 (2008)CrossRefGoogle Scholar
  55. 55.
    S. Laib, S. Seeger, J. Fluoresc. 14, 187 (2004)CrossRefGoogle Scholar
  56. 56.
    M.A. Hink, N.V. Visser, J.W. Borst, A. van Hoek, A.J. Visser, J. Fluoresc. 13, 185 (2003)CrossRefGoogle Scholar
  57. 57.
    R. Punith, A.H. Hegde, S. Jaldappagari, J. Fluoresc. 21, 487 (2011)CrossRefGoogle Scholar
  58. 58.
    F. Ding, B.-Y. Han, W. Liu, L. Zhang, Y. Sun, J. Fluoresc. 20, 753 (2010)CrossRefGoogle Scholar
  59. 59.
    Y. Zhang, J.-H. Li, Y.-S. Ge, X.-R. Liu, F.-L. Jiang, Y. Liu, J. Fluoresc. 21, 475 (2011)CrossRefGoogle Scholar
  60. 60.
    F. Ding, W. Liu, X. Zhang, L. Zhang, Y. Sun, Colloids Surf. B 76, 441 (2010)CrossRefGoogle Scholar
  61. 61.
    S.M. Kelly, T.J. Jess, N.C. Price, Biochim. Biophys. Acta (BBA) Proteins Proteomics 1751, 119 (2005)CrossRefGoogle Scholar
  62. 62.
    M. Shimizu, K. Kobayashi, H. Morii, K. Mitsui, W. Knoll, T. Nagamune, Biochem. Biophys. Res. Commun. 310, 606 (2003)CrossRefGoogle Scholar
  63. 63.
    N.J. Greenfield, G.D. Fasman, Biochemistry 8, 4108 (1969)CrossRefGoogle Scholar
  64. 64.
    M.M. Moghaddam, M. Pirouzi, M.R. Saberi, J. Chamani, Luminescence 29, 314 (2014)CrossRefGoogle Scholar
  65. 65.
    S. Rashidipour, S. Naeeminejad, J. Chamani, J. Biomol. Struct. Dyn. 34, 1 (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Maral Hosseinzadeh
    • 1
  • Shadi Nikjoo
    • 1
  • Najme Zare
    • 1
  • Delaram Delavar
    • 1
  • Sima Beigoli
    • 2
  • Jamshidkhan Chamani
    • 1
    Email author
  1. 1.Department of Biology, Faculty of Sciences, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Endoscopic and Minimally Invasive Surgery Research CenterMashhad University of Medical SciencesMashhadIran

Personalised recommendations