Research on Chemical Intermediates

, Volume 45, Issue 2, pp 287–301 | Cite as

Facile polystyrene/ZnO/Fe3O4 nanocomposites prepared via a hydrothermal approach for enhancement of MB dye degradation

  • R. Suganya
  • N. KrishnaveniEmail author


In this present work, polystyrene/ZnO and polystyrene/ZnO/Fe3O4 nanocomposites (NCs) were prepared by a hydrothermal synthesis method. The crystalline nature of the prepared material was studied based on PXRD analysis. The presence of various functional groups in the resultant material was primarily confirmed from FT-IR spectra. The various defect levels [oxygen interstitials (Oi), oxygen vacancies (Vo), zinc interstitials (Zni), zinc vacancies (VZn) or impurities] observed in the materials were studied using PL spectrum analysis. In addition, the visible emission intensity peak of ZnO gradually decreased as per the reduction rate of defect levels. The various surface morphologies of the synthesized materials were observed via FESEM analysis and the purity of the material was confirmed by the EDAX spectrum. The methylene blue organic dye was degraded utilizing the polystyrene/ZnO and polystyrene/ZnO/Fe3O4 (0.1 M, 0.2 M, 0.3 M) NC catalysts. From the degradation process, polystyrene/ZnO/Fe3O4 (0.3 M) NC shows 80% degradation efficiency within 90 min of irradiation due to its large surface area.


Polystyrene/ZnO/Fe3O4 Nanocomposites Hydrothermal Photocatalytic 


  1. 1.
    A. Roychowdhury, S.P. Pati, A.K. Mishra, S. Kumar, D. Das, J. Phys. Chem. Solids 74, 811 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Amouri, C. Desmarets, J. Moussa, Chem. Rev. 112, 2015 (2012)CrossRefGoogle Scholar
  3. 3.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002)CrossRefGoogle Scholar
  4. 4.
    H.H. Park, K. Woo, J. Ahn, Sci. Rep. 3, 1497 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Mallakpour, E. Khadem, in Recent Achievements in the Synthesis of Biosafe Poly(Vinyl Alcohol) Nanocomposite: Properties and Applications, ed. by Inamuddin. Green Polymer Composites Technology (Taylor & Francis Group, Boca Raton, 2016)Google Scholar
  6. 6.
    S. Mallakpour, V. Behranvand, Colloid Polym. Sci. 292, 2275 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Mallakpour, E. Khadem, J. Polym. Res. 24, 86 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Mallakpour, N. Nouruzi, Polymer 89, 94 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Agrawal, A. Pich, N.E. Zafeiropoulos, S. Gupta, J. Pionteck, F. Simon, M. Stamm, Chem. Mater. 19, 1845 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Ghanbarnezhada, S. Baghshahi, A. Nemati, M. Mahmoodi, Mater. Sci. Semicond. Process. 72, 85 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Hasanpour, M. Niyaifar, M. Asan, J. Amighian, J. Magn. Magn. Mater. 334, 41 (2013)CrossRefGoogle Scholar
  12. 12.
    R.Y. Hong, S.Z. Zhang, G.Q. Zhang, J. Mater. Res. Bull. 43, 2457 (2008)CrossRefGoogle Scholar
  13. 13.
    P. Zou, X. Hong, X. Chu, Y. Li, J. Nanosci. Nanotechnol. 10, 1992 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Karunakaran, P. Vinayagamoorthy, New J. Chem. 40, 1845 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Paul, D. Kufer, A. Muller, S. Bruck, E. Goering, M. Kamp, J. Verbeeck, H. Tian, G. Van Tendeloo, N.J.C. Ingle, M. Sing, R. Claessen, Appl. Phys. Lett. 98, 012512 (2011)CrossRefGoogle Scholar
  16. 16.
    N. Senthilkumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan, I. Vetha Potheher, J. Mater. Sci.: Mater. Electron. 29, 2927 (2018)Google Scholar
  17. 17.
    V. Vijayabala, N. Senthilkumar, K. Nehru, R. Karvembu, J. Mater. Sci.: Mater. Electron. 29, 323 (2018)Google Scholar
  18. 18.
    A.H. Yangjeh, M.S. Gohari, Sep. Purif. Technol. 184, 334 (2017)CrossRefGoogle Scholar
  19. 19.
    R. Rathnasamy, R. Thangamuthu, V. Alagan, Res. Chem. Intermed. 44, 1947 (2017)Google Scholar
  20. 20.
    R. Saleh, N.F. Djaja, Spectrochim. Acta Part A: Mol. Biomol. Spect. 130, 581 (2014)CrossRefGoogle Scholar
  21. 21.
    M.S. Gohari, A.H. Yangjeh, Solid State Sci. 74, 24 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Jeyachitra, V. Senthilnathan, T.S. Senthil, J. Mater. Sci.: Mater. Electron. 29, 1189 (2018)Google Scholar
  23. 23.
    X. Bian, K. Hong, X. Ge, R. Song, L. Liu, M. Xu, J. Phys. Chem. C 119, 1700 (2015)CrossRefGoogle Scholar
  24. 24.
    M.S. Gohari, A.H. Yangjeh, Sep. Purif. Technol. 147, 194 (2015)CrossRefGoogle Scholar
  25. 25.
    F. Riahi, M. Bagherzadeh, Z. Hadizadeh, RSC Adv. 5, 72058 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Wang, F. Niu, Y. Su, Y. Yang, J. Food Process Eng. 39, 69 (2016)CrossRefGoogle Scholar
  27. 27.
    L.K. Jangir, Y. Kumari, A. Kumar, M. Kumar, K. Awasthi, Macromol. Symp. 357, 218 (2015)CrossRefGoogle Scholar
  28. 28.
    P.P. Jeeju, A.M. Sajimol, V.G. Sreevalsa, S.J. Varma, S. Jayalekshmi, Polym. Int. 60, 1263 (2011)CrossRefGoogle Scholar
  29. 29.
    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Status Solidi B 241, 231 (2004)CrossRefGoogle Scholar
  30. 30.
    H. Zhuang, J. Wang, H. Liu, J. Li, P. Xu, Acta Phys. Pol., A 119, 819 (2011)CrossRefGoogle Scholar
  31. 31.
    N. Senthilkumar, M. Ganapathy, A. Arulraj, M. Meena, M. Vimalan, I. Vethapotheher, J. Alloys Compd. 750, 171 (2018)CrossRefGoogle Scholar
  32. 32.
    C. Rajkumar, A. Arulraj, Mater. Res. Express. 5, 015029 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Ceram. Int. 3, 3063 (2017)CrossRefGoogle Scholar
  34. 34.
    R. Rajeswari, T. Pitchai, T. Rangasamy, S. Sridhar, A. Viswanathan, J. Mater. Sci.: Mater. Electron. 28, 10374 (2017)Google Scholar
  35. 35.
    M. Xu, Q. Li, H. Fan, Adv. Powder Technol. 25, 1715 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Xia, A. Wang, X. Liu, Z. Su, Appl. Surf. Sci. 257, 9724 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryVelalar College of Engineering and TechnologyErodeIndia

Personalised recommendations