Research on Chemical Intermediates

, Volume 45, Issue 2, pp 261–285 | Cite as

Production of light olefins from methanol over modified H-ZSM-5: effect of metal impregnation in high-silica zeolite on product distribution

  • Fatemeh GorzinEmail author
  • Fereydoon Yaripour


Improvement of H-ZSM-5 catalyst to convert methanol to light olefins was studied in this research. High-silica H-ZSM-5 zeolite (Si/Al = 200) was prepared by a hydrothermal method and modified by impregnation with different promoters (Cs, Mg, Ag, Mn, Fe, Ni, Ir, or P). The parent and modified catalysts were characterized using X-ray diffraction (XRD) analysis, inductively coupled plasma (ICP) spectrometry, scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) measurements, Fourier-transform infrared (FT-IR) spectroscopy, and NH3-temperature programmed desorption (TPD) measurements. Performance tests were performed for all samples in a fixed-bed reactor at 480 °C, 1 bar, and methanol weight hourly space velocity (WHSV) of 0.9 h−1, using feed with methanol to water weight ratio of unity. The results revealed that the parent catalyst was stable during the impregnation process and that the promoted catalysts exhibited nearly the same crystallinity and BET surface area compared with the parent sample. The acidity of the catalysts was decreased after impregnation of promoters except for Ag. It was found that the propylene selectivity was strongly dependent on the structure, texture, and acidic properties of the catalysts, being affected by the type of promoter. The phosphorus- and iron-promoted H-ZSM-5 catalysts showed high propylene selectivity (45.7 % and 43.7 %, respectively) and good catalytic stability, which was attributed to the moderate density and distribution of acidic sites over these catalysts.


Methanol to light olefins (MTO) H-ZSM-5 Hydrothermal synthesis Catalyst promotion Metal impregnation 



The authors would like to acknowledge the Petrochemical Research and Technology Company (Tehran, Iran) and Tarbiat Modares University (Tehran, Iran) for financial support of the research.


  1. 1.
    C.D. Chang, A.J. Silvestri, J. Catal. 47, 2 (1977)CrossRefGoogle Scholar
  2. 2.
    M. Stöcker, Microporous Mesoporous Mater. 29, 1 (1999)CrossRefGoogle Scholar
  3. 3.
    F.L. Bleken, S. Chavan, U. Olsbye, M. Boltz, F. Ocampo, B. Louis, Appl. Catal. A 447, 178 (2012)CrossRefGoogle Scholar
  4. 4.
    D.A. Gunawardena, S.D. Fernando, J. Thermodyn. 2012 (2012)Google Scholar
  5. 5.
    K.-Y. Lee, H.-K. Lee, S.-K. Ihm, Top. Catal. 53, 3 (2010)Google Scholar
  6. 6.
    W. Wu, W. Guo, W. Xiao, M. Luo, Fuel Process. Technol. 108, 133 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Jiao, C. Jiang, Z. Yang, J. Liu, J. Zhang, Microporous Mesoporous Mater. 181, 201 (2013)CrossRefGoogle Scholar
  8. 8.
    Q. Wang, L. Wang, H. Wang, Z. Li, H. Wu, G. Li, X. Zhang, S. Zhang, Asia-Pac. J. Chem. Eng. 6, 4 (2011)CrossRefGoogle Scholar
  9. 9.
    T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Appl. Catal. A Gen. 472, 72 (2014)CrossRefGoogle Scholar
  10. 10.
    B.P. Hereijgers, F. Bleken, M.H. Nilsen, S. Svelle, K.-P. Lillerud, M. Bjørgen, B.M. Weckhuysen, U. Olsbye, J. Catal. 264, 1 (2009)CrossRefGoogle Scholar
  11. 11.
    J.W. Park, S.J. Kim, M. Seo, S.Y. Kim, Y. Sugi, G. Seo, Appl. Catal. A 349, 1 (2008)CrossRefGoogle Scholar
  12. 12.
    Q. Zhang, S. Hu, L. Zhang, Z. Wu, Y. Gong, T. Dou, Green Chem. 16, 1 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Ivanova, C. Lebrun, E. Vanhaecke, C. Pham-Huu, B. Louis, J. Catal. 265, 1 (2009)CrossRefGoogle Scholar
  14. 14.
    J.C. Védrine, A. Auroux, P. Dejaifve, V. Ducarme, H. Hoser, S. Zhou, J. Catal. 73, 1 (1982)CrossRefGoogle Scholar
  15. 15.
    D.V. Vu, J. Jpn. Petrol. Inst. 53, 4 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Liu, C. Zhang, Z. Shen, W. Hua, Y. Tang, W. Shen, Y. Yue, H. Xu, Catal. Commun. 10, 11 (2009)Google Scholar
  17. 17.
    M. Kaarsholm, F. Joensen, J. Nerlov, R. Cenni, J. Chaouki, G.S. Patience, Chem. Eng. Sci. 62, 18 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Zhang, B. Zhang, Z. Gao, Y. Han, Ind. Eng. Chem. Res. 49, 5 (2010)Google Scholar
  19. 19.
    S. Papari, A. Mohammadrezaei, M. Asadi, R. Golhosseini, A. Naderifar, Catal. Commun. 16, 1 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Mohammadrezaei, S. Papari, M. Asadi, A. Naderifar, R. Golhosseini, Front. Chem. Sci. Eng. 6, 3 (2012)CrossRefGoogle Scholar
  21. 21.
    B. Valle, A. Alonso, A. Atutxa, A. Gayubo, J. Bilbao, Catal. Today 106, 1 (2005)CrossRefGoogle Scholar
  22. 22.
    R.L.V. Mao, P. Lévesque, B. Sjiariel, Can. J. Chem. Eng. 64, 3 (1986)CrossRefGoogle Scholar
  23. 23.
    A.J. Koekkoek, H. Xin, Q. Yang, C. Li, E.J. Hensen, Microporous Mesoporous Mater. 145, 1 (2011)CrossRefGoogle Scholar
  24. 24.
    P. Li, W. Zhang, X. Han, X. Bao, Catal. Lett. 134, 1 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Salmasi, S. Fatemi, A.T. Najafabadi, J. Ind. Eng. Chem. 17, 4 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Jansen, F. Van der Gaag, H. Van Bekkum, Zeolites 4, 4 (1984)CrossRefGoogle Scholar
  27. 27.
    S.N.A.M. Abrishamkar, H. Kazemian, Z. Anorg. Allg. Chem. 637 (2011)Google Scholar
  28. 28.
    J. Chen, Z. Feng, P. Ying, C. Li, J. Phys. Chem. B 108, 34 (2004)Google Scholar
  29. 29.
    J.C. Védrine, A. Auroux, V. Bolis, P. Dejaifve, C. Naccache, P. Wierzchowski, E.G. Derouane, J.B. Nagy, J.-P. Gilson, J.H. van Hooff, J. Catal. 59, 2 (1979)CrossRefGoogle Scholar
  30. 30.
    G. Coudurier, J. Vedrine, Pure Appl. Chem. 58, 10 (1986)CrossRefGoogle Scholar
  31. 31.
    G. Martins, G. Berlier, C. Bisio, S. Coluccia, H. Pastore, L. Marchese, J. Phys. Chem. C 112, 18 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Figueiredo, M. Pereira, M. Freitas, J. Orfao, Carbon 37, 9 (1999)Google Scholar
  33. 33.
    Z. Song, A. Takahashi, I. Nakamura, T. Fujitani, Appl. Catal. A 384, 1 (2010)CrossRefGoogle Scholar
  34. 34.
    Y.-J. Lee, J.M. Kim, J.W. Bae, C.-H. Shin, K.-W. Jun, Fuel 88, 10 (2009)Google Scholar
  35. 35.
    D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B.-L. Su, Z. Liu, Microporous Mesoporous Mater. 116, 1 (2008)CrossRefGoogle Scholar
  36. 36.
    W. Dai, X. Wang, G. Wu, N. Guan, M. Hunger, L. Li, ACS Catal. 1, 4 (2011)Google Scholar
  37. 37.
    X. Wang, W. Dai, G. Wu, L. Li, N. Guan, M. Hunger, Microporous Mesoporous Mater. 151, 99 (2012)CrossRefGoogle Scholar
  38. 38.
    Z.Y. Zakaria, J. Linnekoski, N. Amin, Chem. Eng. J. 207, 803 (2012)CrossRefGoogle Scholar
  39. 39.
    K. Suzuki, PhD thesis, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 2009Google Scholar
  40. 40.
    L. Ye, F. Cao, W. Ying, D. Fang, Q. Sun, J. Porous Mater. 18, 2 (2011)CrossRefGoogle Scholar
  41. 41.
    J. Li, Y. Wei, Y. Qi, P. Tian, B. Li, Y. He, F. Chang, X. Sun, Z. Liu, Catal. Today 164, 1 (2011)CrossRefGoogle Scholar
  42. 42.
    S.M. Campbell, X.-Z. Jiang, R.F. Howe, Microporous Mesoporous Mater. 29, 1 (1999)CrossRefGoogle Scholar
  43. 43.
    Y. Sun, H. Yan, D. Liu, D. Zhao, Catal. Commun. 9, 5 (2008)CrossRefGoogle Scholar
  44. 44.
    J. Zhang, H. Zhang, X. Yang, Z. Huang, W. Cao, J. Nat. Gas Chem. 20, 3 (2011)Google Scholar
  45. 45.
    Z. Liu, G. Chen, J. Liang, Q. Wang, G. Cai, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1991), p. 815Google Scholar
  46. 46.
    G. Seo, R. Ryoo, J. Catal. 124, 1 (1990)CrossRefGoogle Scholar
  47. 47.
    S. Svelle, U. Olsbye, F. Joensen, M. Bjørgen, J. Phys. Chem. C 111, 49 (2007)CrossRefGoogle Scholar
  48. 48.
    D. Mier, A.T. Aguayo, A.G. Gayubo, M. Olazar, J. Bilbao, Chem. Eng. J. 160, 2 (2010)CrossRefGoogle Scholar
  49. 49.
    H. Hu, F. Cao, W. Ying, Q. Sun, D. Fang, Chem. Eng. J. 160, 2 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Catalysis Research Group, Petrochemical Research and Technology CompanyNational Iranian Petrochemical CompanyTehranIran

Personalised recommendations