Research on Chemical Intermediates

, Volume 45, Issue 2, pp 249–259 | Cite as

Improved visible-light photoactivity of Pt/g-C3N4 nanosheets for solar fuel production via pretreated boric acid modification

  • Yuying Wang
  • Linlu Bai
  • Ziqing Zhang
  • Yang QuEmail author
  • Liqiang JingEmail author


In this work, the photocatalytic activities of g-C3N4 nanosheets for CO2 conversion and H2 production were obviously promoted by modifying an appropriate amount of Pt as the photoelectron-acceptor and co-catalyst. The optimized 0.5Pt–CN displayed ~ 2-times higher photocatalytic activities for both CO2 reduction and H2 production than those of bare CN nanosheets. Importantly, the photocatalytic activities for solar fuel production of Pt–g-C3N4 nanosheets can be further enhanced by pretreating a suitable amount of boric acid modification on g-C3N4 nanosheets. Compared to 0.5Pt–CN and bare CN, the optimized 0.5Pt–5B–CN (5% boric acid in molar ratios) displayed ~ 2- and 9-times enhancement for reducing CO2 to CO, as well as CH4 while ~ 2- and 10-times enhancement for H2 production, respectively. By means of the steady-state surface photovoltage spectra, fluorescence spectra and fluorescence spectra related to the produced ·OH amount, the exceptional photoactivities were comprehensively attributed to the boric acid-assisted high dispersion of Pt on g-C3N4 nanosheet which enhances the charge separation and improves the co-catalytic activity. This pretreated boric acid modification strategy is also applicable for other noble metals like Ag and Au. This work provides a new strategy on developing an efficient g-C3N4-based photocatalyst for solar fuel production.

Graphical abstract


Pt/g-C3N4 nanosheet Pretreated boric acid modification Charge separation Visible-light photocatalysis Solar fuel production 



This work was supported by the National Natural Science Foundation of China (U1401245, 21706044, 21501052 and 91622119), the China Postdoctoral Science Foundation (2015M570304, 2017M621316) and Special Funding for Postdoctoral of Heilongjiang Province (LBH-TZ0619).


  1. 1.
    S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J.W. Tang, Energy Environ. Sci. 8, 731 (2015)CrossRefGoogle Scholar
  2. 2.
    A.A. Farghali, W.M.A.E. Rouby, A. Hamdedein, Res. Chem. Intermed. 43, 7171 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Dong, X. Guo, Y. Yin, Res. Chem. Intermed. 44, 3151 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, H. Xu, H. Chen, M. Anpo, Res. Chem. Intermed. 196, 232 (2016)Google Scholar
  5. 5.
    Z.Y. Wang, S. Yan, Y.J. Sun, T. Xiong, F. Dong, W. Zhang, Appl. Catal. B Environ. 29, 839 (2003)Google Scholar
  6. 6.
    N.S. Shaha, J.A. Khan, M. Sayed, Z.U.H. Khan, A.D. Rizwan, N. Muhammad, G. Boczkaj, B. Murtaza, M. Imran, H.M. Khan, G. Zaman, Chem. Eng. J. 351, 841 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Sayed, J.A. Khan, L.A. Shah, N.S. Shaha, F. Shah, H.M. Khan, P. Zhang, H. Arandiyan, J. Phys. Chem. C 122, 406 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Sayed, L.A. Shah, J.A. Khan, N.S. Shah, J. Nisar, H.M. Khan, P. Zhang, A.R. Khan, J. Phys. Chem. A 120, 9916 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Li, Z. Zeng, L. Yan, M. Huo, Y. Guo, S. Luo, X. Luo, Appl. Catal. B Environ. 187, 269 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, Y. Chen, X. Wang, Energy Environ. Sci. 8, 3092 (2015)CrossRefGoogle Scholar
  11. 11.
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Qu, W. Zhou, Y. Xie, L. Jiang, J. Wang, G. Tian, Z. Ren, C. Tian, H.G. Fu, Chem. Commun. 49, 8510 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 43, 7787 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)CrossRefGoogle Scholar
  15. 15.
    F. Fina, H. Ménard, J.T.S. Irvine, Chem. Chem. Phys. 17, 13929 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Tong, B.C. Zhu, C.J. Jiang, B. Cheng, JGYu. Appl, Surf. Sci. 433, 1175 (2018)CrossRefGoogle Scholar
  17. 17.
    F. Sun, S. Tan, H. Zhang, Z. Xing, R. Yang, B. Mei, Z. Jiang, J. Colloid Interface Sci. 531, 119 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D.M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 352, 797 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Li, Y. Luan, Y. Qu, L. Jing, ACS Appl. Mater. Interfaces 7, 22727 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Li, F. Raziq, C. Liu, Z. Li, L. Sun, L. Jing, Appl. Surf. Sci. 358, 240 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Luan, M. Xie, X. Fu, Y. Qu, X. Sun, L. Jing, Phys. Chem. Chem. Phys. 17, 5043 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Subramonian, T.Y. Wu, S.-P. Chai, J. Alloys Compd. 695, 496 (2017)CrossRefGoogle Scholar
  23. 23.
    C.Y. Teh, T.Y. Wu, J.C. Juan, Catal. Today 256, 365 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Sun, H. Wang, Z. Wu, L. Wang, Catal. Today 300, 160 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Zaleska, E. Grabowska, J.W. Sobczak, M. Gazda, J. Hupka, Appl. Catal. B Environ. 89, 469 (2009)CrossRefGoogle Scholar
  26. 26.
    J. Shan, F. Raziq, M. Humayun, W. Zhou, Y. Qu, G. Wang, Y. Li, Appl. Catal. B Environ. 219, 10 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Li, P.A. Salvador, G.S. Rohrer, Nanoscale 6, 24 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Chen, R. Yan, X. Zhang, K. Hu, Z. Li, M. Humayun, Y. Qu, L. Jing, Appl. Catal. B Environ. 209, 320 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of ChinaHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations