Research on Chemical Intermediates

, Volume 45, Issue 2, pp 155–168 | Cite as

Iron(III)–salen complex on a polymer scaffold as heterogeneous catalyst for synthesis of benzimidazoles

  • Kamlesh Rudreshwar Balinge
  • Sagar Krushnarao Datir
  • Vijay Baburao Khajone
  • Karan Jivanlal Bhansali
  • Avinash Ganesh Khiratkar
  • Pundlik Rambhau BhagatEmail author


Benzimidazoles are important bioactive compounds with diverse applications in the medicinal, industrial, as well as agrochemical fields. In this study, an iron–salen complex on a polymer scaffold was synthesized and characterized, and its performance assessed as a heterogeneous catalyst for synthesis of benzimidazoles. Formation of the metal complex was well confirmed by Fourier-transform infrared spectroscopy (FT-IR) analysis, and the surface morphology and elemental composition was verified by scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The surface area and pore size distribution were determined by Brunauer–Emmett–Teller analysis, and the high thermal stability of the catalyst was revealed by thermogravimetric analysis. Its general potential for synthesis of benzimidazoles from o-phenylenediamine with aldehydes containing various electron-withdrawing and electron-donating substituents was confirmed. The effects of different solvents, catalyst loadings, temperatures, and reaction durations were also studied. The present protocol is found to be beneficial in terms of excellent yield, adequate reaction time, and simple workup. Also, hot filtration tests confirmed that the catalyst was truly heterogeneous and could be readily recycled and reused several times, making this protocol attractive, commercial, and environmentally friendly.


Polymer scaffold–Fe–salen Heterogeneous catalyst Benzimidazole synthesis Thermally stable 



The authors thank VIT-Vellore for providing “VIT SEED GRANT” for carrying out this research work and SIF DST-VIT-FIST for NMR, GC-MS, FT-IR, and SEM/EDX, as well as VIT-Vellore for providing necessary facilities to bring this article to this level. We are also grateful to the Dean, School of Advanced Sciences, and all the scholars of our research laboratory “Smart Materials Laboratory for Bio-sensing and Catalysis” VIT-Vellore, who encouraged the authors during this period.

Supplementary material

11164_2018_3595_MOESM1_ESM.docx (385 kb)
Supplementary material 1 (DOCX 385 kb)


  1. 1.
    C. Kus, N. Altanlar, Turk. J. Chem. 27, 35 (2003)Google Scholar
  2. 2.
    H.A. Barker, R.D. Smyth, H. Weissbach, J.I. Toohey, J.N. Ladd, B.E. Volcani, J. Biol. Chem. 235, 480 (1960)Google Scholar
  3. 3.
    R. Zou, K.R. Ayres, J.C. Drach, L.B. Townsend, J. Med. Chem. 39, 3477 (1996)CrossRefGoogle Scholar
  4. 4.
    Y. Lu, J. Chen, J. Wang, C. Li, S. Ahn, C.M. Barrett, J.T. Dalton, W. Li, D.D. Miller, J. Med. Chem. 57, 7355 (2014)CrossRefGoogle Scholar
  5. 5.
    P.N. Presston, Chem. Rev. 74, 279 (1974)CrossRefGoogle Scholar
  6. 6.
    J.-X. Li, Z.-B. Qin, Y.-H. Li, G.-H. Cui, Ultrason. Sonochem. 48, 127 (2018)CrossRefGoogle Scholar
  7. 7.
    J.W. Cui, S.X. Hou, Y.H. Li, G.H. Cui, Dalton Trans. 46, 16911 (2017)CrossRefGoogle Scholar
  8. 8.
    J.M. Roque, T. Pandiyan, J. Cruz, E. Garcia-Ochoa, Corros. Sci. 50, 614 (2008)CrossRefGoogle Scholar
  9. 9.
    N. Singh, D.O. Jang, Org. Lett. 9, 1991 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Shao, Y. Qiao, H. Lin, H. Lin, J. Fluoresc. 19, 183 (2009)CrossRefGoogle Scholar
  11. 11.
    A.J. Blacker, M.M. Farah, M.I. Hall, S.P. Marsden, O. Saidi, J.M.J. Williams, Org. Lett. 11, 2039 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Bahrami, M.M. Khodaei, F. Naali, J. Org. Chem. 73, 6835 (2008)CrossRefGoogle Scholar
  13. 13.
    J.P. Lin, F.H. Zhang, Y.Q. Long, Org. Lett. 16, 2822 (2014)CrossRefGoogle Scholar
  14. 14.
    S.K. Alla, R.K. Kumar, P. Sadhu, T. Punniyamurthy, Org. Lett. 15, 1334 (2013)CrossRefGoogle Scholar
  15. 15.
    L.H. Du, Y.G. Wang, Synthesis 5, 675 (2007)Google Scholar
  16. 16.
    S. Hati, P. Kumar Dutta, S. Dutta, P. Munshi, S. Sen, Org. Lett. 18, 3090 (2016)CrossRefGoogle Scholar
  17. 17.
    D. Xue, Y. Long, J. Org. Chem. 79, 4727 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Lv, W. Bao, J. Org. Chem. 74, 5618 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Kim, M.R. Kumar, N. Park, Y. Heo, S. Lee, J. Org. Chem. 76, 9577 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Mahesh, P. Sadhu, T. Punniyamurthy, J. Org. Chem. 80, 1644 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Peng, M. Ye, C. Zong, F. Hu, L. Feng, X. Wang, Y. Wang, C. Chen, J. Org. Chem. 76, 716 (2011)CrossRefGoogle Scholar
  22. 22.
    D. Mahesh, P. Sadhu, T. Punniyamurthy, J. Org. Chem. 81, 3227 (2016)CrossRefGoogle Scholar
  23. 23.
    M.M. Guru, A. Ali, T. Punniyamurthy, J. Org. Chem. 76, 5295 (2011)CrossRefGoogle Scholar
  24. 24.
    X. Diao, Y. Wang, Y. Jiang, D. Ma, J. Org. Chem. 74, 7974 (2009)CrossRefGoogle Scholar
  25. 25.
    T.B. Nguyen, L. Ermolenko, A. Al-Mourabit, Synthesis 47, 1741 (2015)CrossRefGoogle Scholar
  26. 26.
    T.B. Nguyen, L. Ermolenko, W.A. Dean, A. Al-mourabit, Org. Lett. 14, 5948 (2012)CrossRefGoogle Scholar
  27. 27.
    T.B. Nguyen, J. Le Bescont, L. Ermolenko, A. Al-Mourabit, Org. Lett. 15, 6218 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Baars, A. Beyer, S.V. Kohlhepp, C. Bolm, Org. Lett. 16, 536 (2014)CrossRefGoogle Scholar
  29. 29.
    M.S. Mayo, X. Yu, X. Zhou, X. Feng, Y. Yamamoto, M. Bao, Org. Lett. 16, 764 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Wang, J. Sheng, H. Tian, Synth. Commun. 34, 4265 (2004)CrossRefGoogle Scholar
  31. 31.
    L. Fan, L. Kong, W. Chen, Heterocycles 91, 2306 (2015)CrossRefGoogle Scholar
  32. 32.
    J.S. Yadav, B.V.S. Reddy, K. Premalatha, M.S.R. Murty, J. Mol. Catal. A Chem. 271, 161 (2007)CrossRefGoogle Scholar
  33. 33.
    H.G.O. Alvim, H.C.B. Oliveira, G. Bataglion, M.N. Eberlin, L.M. Ramos, W. Silva, RSC Adv. 5, 69418 (2015)CrossRefGoogle Scholar
  34. 34.
    A.G. Khiratkar, N. Muskawar, P.R. Bhagat, RSC Adv. 6, 105087 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Kasprzak, M. Bystrzejewski, M. Poplawska, Dalton Trans. 47, 6314 (2018)CrossRefGoogle Scholar
  36. 36.
    L.Z. Fekri, R. Maleki, J. Heterocycl. Chem. 54, 1167 (2016)CrossRefGoogle Scholar
  37. 37.
    B. Wang, W. Ran, W. Sun, K. Wang, Ind. Eng. Chem. Res. 51, 3932 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Xie, Q. Zhang, K.T. Chuang, Catal. Lett. 93, 181 (2004)CrossRefGoogle Scholar
  39. 39.
    J. Xie, Q. Zhang, K.T. Chuang, Appl. Catal. A 220, 215 (2001)CrossRefGoogle Scholar
  40. 40.
    N.T.S. Phan, D.H. Brown, P. Styring, Tetrahedron Lett. 45, 7915 (2004)CrossRefGoogle Scholar
  41. 41.
    F. Siga, H. Temel, M. Aydemir, Y. Selim, S. Pasa, A. Baysal, Appl. Catal. A Gen. 449, 172 (2012)CrossRefGoogle Scholar
  42. 42.
    P. Saha, T. Ramana, N. Purkait, M.A. Ali, R. Paul, T. Punniyamurthy, J. Org. Chem. 74, 8719 (2009)CrossRefGoogle Scholar
  43. 43.
    A. Dhakshinamoorthy, K. Kanagaraj, K. Pitchumani, Tetrahedron Lett. 52, 69 (2011)CrossRefGoogle Scholar
  44. 44.
    K.R. Balinge, A.G. Khiratkar, P.R. Bhagat, J. Mol. Liq. 242, 1085 (2017)CrossRefGoogle Scholar
  45. 45.
    K.R. Balinge, A.G. Khiratkar, P.R. Bhagat, J. Organomet. Chem. 854, 131 (2018)CrossRefGoogle Scholar
  46. 46.
    K.R. Balinge, A.G. Khiratkar, P.N. Muskawar, K. Thenmozhi, P.R. Bhagat, Res. Chem. Intermed. 44, 2075 (2018)CrossRefGoogle Scholar
  47. 47.
    S. Gazi, R. Ananthakrishnan, N.D.P. Singh, J. Hazard. Mater. 183, 894 (2015)CrossRefGoogle Scholar
  48. 48.
    G. Brahmachari, S. Laskarm, P. Barik, RSC Adv. 3, 14245 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Kamlesh Rudreshwar Balinge
    • 1
  • Sagar Krushnarao Datir
    • 1
  • Vijay Baburao Khajone
    • 1
  • Karan Jivanlal Bhansali
    • 1
  • Avinash Ganesh Khiratkar
    • 1
  • Pundlik Rambhau Bhagat
    • 1
    Email author
  1. 1.Department of Chemistry, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations