Photoinduced one-pot synthesis of hydroxamic acids from aldehydes through in-situ generated silver nanoclusters

  • Yasser M. A. Mohamed
  • Yasser A. Attia
  • Eirik Johansson Solum


Hydroxamic acids have attracted significant attention due to their widespread use in applied chemistry. In this report, a modified Angeli–Rimini method has been achieved via the visible light-mediated catalytic transformation of a variety of heterocyclic, aromatic and aliphatic aldehydes 1a–j to their corresponding hydroxamic acids 2a–j in 81–93% yield. The unique ability of vitamin K3 as a photoredox catalyst to expedite the development of completely new reaction mechanisms and to enable the construction of challenging carbon–nitrogen bonds has been investigated. It is shown for the first time that the vitamin K3 and aldehyde are largely responsible for rapid in situ reduction of Ag+ ions to catalytic photoluminescent Ag nanoclusters that possess a bandgap energy of 2.87 eV and are less than 2 nm in size. A mechanism for this reaction has been proposed and is supported by UV–Vis, TEM, ESI/MS, FT-IR, 1H NMR and 13C NMR analyses. The investigated method utilizes readily available reagents and produces the hydroxamic acids in high yields without the formation of side products, making it simple, practical and cost-effective.


Ag nanoclusters Angeli–Rimini reaction Hydroxamic acids Vitamin K3 Photocatalysis 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors are grateful to the National Research Center (Egypt), National Institute of Laser Enhanced Sciences, Cairo University (Egypt) and NORD University (Norway) for providing the facilities.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    A. Porcheddu, G. Giacomelli, J. Org. Chem. 71, 7057 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    K.S. Jain, K.A.A. Kumar, S.B. Bharate, R.A. Vishwakarm, Org. Biomol. Chem. 12, 6465 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    F.T. Wong, P.K. Patra, J. Seayad, Y. Zhang, J.Y. Ying, Org. Lett. 10, 2333 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    S.L. Yedage, B.M. Bhanage, Synthesis 47, 526 (2015)Google Scholar
  5. 5.
    G.N. Papadopoulos, C.G. Kokotos, Chem. Eur. J. 22, 6964 (2016)CrossRefPubMedGoogle Scholar
  6. 6.
    J.C.S. Woo, E. Fenster, G.R. Dake, J. Org. Chem. 69, 8984 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    A. Gissot, A. Volonterio, M. Zanda, J. Org. Chem. 70, 6925 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    J.R. Martinelli, D.M.M. Freckmann, S.L. Buchwald, Org. Lett. 8, 4843 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    K. Thalluri, S.R. Manne, D. Dev, B. Mandal, J. Org. Chem. 79, 3765 (2014)CrossRefPubMedGoogle Scholar
  10. 10.
    B. Vasantha, H.P. Hemantha, V.V. Sureshbabu, Synthesis 2010, 2990 (2010)CrossRefGoogle Scholar
  11. 11.
    E.M. Muri, M.J. Nieto, R.D. Sindelar, J.S. Williamson, Curr. Med. Chem. 9, 1631 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    A. Yekkour, A. Meklat, C. Bijani, O. Toumatia, R. Errakhi, A. Lebrihi, F. Mathieu, A. Zitouni, N. Sabaou, Lett. Appl Microbiol. 60, 589 (2015)CrossRefPubMedGoogle Scholar
  13. 13.
    N. Türkel, J. Chem. Eng. Data 56, 2337 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Harty, S.L. Bearne, J. Therm. Anal. Calorim. 123, 2573 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Chen, C. Liu, M. Wang, C. Zhang, N. Luo, Y. Wang, H. Abroshan, G. Li, F. Wang, ACS Catal. 7, 3632 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Miyauchi, H. Irie, M. Liu, X. Qiu, H. Yu, K. Sunada, K. Hashimoto, J. Phys. Chem. Lett. 7, 75 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    M.A. Koklioti, T. Skaltsas, Y. Sato, K. Suenaga, A. Stergiou, N. Tagmatarchis, Nanoscale 9, 9685 (2017)CrossRefPubMedGoogle Scholar
  18. 18.
    J.C. Ahern, S. Kanan, H.H. Patterson, Comments Inorg. Chem. 35, 59 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Zhu, N. Goswami, Q. Yao, T. Chen, Y. Liu, Q. Xu, D. Chen, J. Lu, J. Xie, J. Mater. Chem. A 6, 1102 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Abbet, A. Sanchez, U. Heiz, W.D. Schneider, A.M. Ferrari, G. Pacchioni, N. Rösch, J. Am. Chem. Soc. 122, 3453 (2000)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, H. Tsunoyama, T.C. Akita, S. Xie, T.C. Tsukuda, ACS Catal. 1, 2 (2011)CrossRefGoogle Scholar
  22. 22.
    F.F. Schweinberger, M.J. Berr, M. Döblinger, C. Wolff, K.E. Sanwald, A.S. Crampton, C.J. Ridge, F. Jäcke, J. Feldmann, M. Tschurl, U. Heiz, J. Am. Chem. Soc. 135, 13262 (2013)CrossRefPubMedGoogle Scholar
  23. 23.
    U. Heiz, A. Sanchez, S. Abbet, W.D. Schneider, Chem. Phys. 262, 189 (2000)CrossRefGoogle Scholar
  24. 24.
    A.S. Wörz, K. Judai, S. Abbet, U. Heiz, J. Am. Chem. Soc. 125, 7964 (2003)CrossRefPubMedGoogle Scholar
  25. 25.
    Y. Attia, M. Samer, Renew. Sustain. Energy Rev. 79, 878 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Yin, Z. Wang, E.R. Bernstein, Phys. Chem. Chem. Phys. 15, 4699 (2013)CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Attia, D. Buceta, C. Blanco-Varela, M. Mohamed, G. Barone, M.A. López-Quintela, J. Am. Chem. Soc. 136, 1182 (2014)CrossRefPubMedGoogle Scholar
  28. 28.
    Y. Attia, D. Buceta, F. Requejo, L. Giovanetti, M.A. López-Quintela, Nanoscale 7, 11273 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    Y. Lu, W. Chen, Chem. Soc. Rev. 41, 3594 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    B. Adhikari, A. Banerjee, Chem. Mater. 22, 4364 (2010)CrossRefGoogle Scholar
  31. 31.
    N. Cathcart, P. Mistry, C. Makra, B. Pietrobon, N. Coombs, M. Jelokhani-Niaraki, V. Kitaev, Langmuir 25, 5840 (2009)CrossRefPubMedGoogle Scholar
  32. 32.
    S. Dai, X. Zhang, T. Li, Z. Du, H. Dang, Appl. Surf. Sci. 249, 346 (2005)CrossRefGoogle Scholar
  33. 33.
    W. Guo, J. Yuan, Q. Dong, E. Wang, J. Am. Chem. Soc. 132, 932 (2010)CrossRefPubMedGoogle Scholar
  34. 34.
    H.C. Yeh, J. Sharma, J.J. Han, J.S. Martinez, J.H. Werner, Nano Lett. 10, 3106 (2010)CrossRefPubMedGoogle Scholar
  35. 35.
    C.I. Richards, S. Choi, J.C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y.L. Tzeng, R.M. Dickson, J. Am. Chem. Soc. 130, 5038 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    X.L. Guevel, B. Hötzer, G. Jung, K. Hollemeyer, V. Trouillet, M. Schneider, J. Phys. Chem. C 115, 10955 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Xie, Y. Zheng, J.Y. Ying, J. Am. Chem. Soc. 131, 888 (2009)CrossRefPubMedGoogle Scholar
  38. 38.
    A. Mathew, P.R. Sajanlal, T. Pradeep, J. Mater. Chem. 21, 11205 (2011)CrossRefGoogle Scholar
  39. 39.
    N.K. Makhmudova, ZCh. Kadyrova, E.A. Del’yaridi, KhT Sharipov, Russ. J. Org. Chem. 37, 866 (2001)CrossRefGoogle Scholar
  40. 40.
    O. Kreye, S. Wald, M.A.R. Meier, Adv. Synth. Catal. 355, 81 (2013)CrossRefGoogle Scholar
  41. 41.
    G. Dettori, S. Gaspa, A. Porcheddu, L. De Luca, Adv. Synth. Catal. 356, 2709 (2014)CrossRefGoogle Scholar
  42. 42.
    A.R. Katritzky, N. Kirichenko, B.V. Rogovoy, Synthesis 2003, 2777 (2003)CrossRefGoogle Scholar
  43. 43.
    J. Schlupmann, F. Lendzian, M. Plato, K. Mobius, J. Chem. Soc. Faraday Trans. 89, 2853 (1993)CrossRefGoogle Scholar
  44. 44.
    N. Durán, P.D. Marcato, O.L. Alves, G.D. Souza, E. Esposito, J. Nanobiotech. 3, 8 (2005)CrossRefGoogle Scholar
  45. 45.
    A. Król-Gracz, P. Nowak, E. Michalak, A. Dyonizy, Acta Phys. Pol. A 121, 196 (2012)CrossRefGoogle Scholar
  46. 46.
    S.E. Selva, D. Martinez, M.J. Buceta, M.C. Rodriguez-Vazquez, M.A. Blanco, G.Egea Lopez-Quintela, J. Am. Chem. Soc. 132, 6947 (2010)CrossRefPubMedGoogle Scholar
  47. 47.
    K. Jyoti, M. Baunthiyal, A. Singh, J. Radiat. Res. Appl. Sci. 9, 217 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Photochemistry DepartmentNational Research CenterDokki, GizaEgypt
  2. 2.National Institute of Laser Enhanced SciencesCairo UniversityGizaEgypt
  3. 3.Faculty of Health SciencesNORD UniversityNamsosNorway

Personalised recommendations