Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 11, pp 7107–7116 | Cite as

Z-scheme CuFe2O4–TiO2 nanocomposite microspheres for the photodegradation of methylene blue

  • Yanze Wei
  • Huijuan Li
  • Ruiling Zhang
  • Hanyi Xie
  • Xiangfeng Chen
Article
  • 66 Downloads

Abstract

The design and synthesis of effective photocatalysts for photodegradation of persistent organic pollutants is of significant importance. Novel CuFe2O4 microspheres were successfully synthesized through a facile one-pot hydrothermal route. The composite CuFe2O4–TiO2 photocatalysts with a heterojunction were then fabricated through a simple mixing and heating method. The transmission electron microscopy (TEM) images revealed the clear hollow structure of the catalyst, and the TiO2 nanoparticles were attached tightly on the surface of the microspheres. Crystal structures and surface chemical composition of the photocatalysts were confirmed by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. The band structure of the CuFe2O4–TiO2 photocatalyst was confirmed using Mott–Schottky measurements and UV–Vis absorption results. As expected, the CuFe2O4–TiO2 photocatalysts exhibited an enhanced photodegradation activity of methylene blue compared to bare CuFe2O4 and TiO2. A Z-scheme system was proposed and the efficient separation of photogenerated electron-hole pairs through the heterojunction resulted in the enhanced performance. This study provides an effective noble-metal-free and low-cost photocatalyst, and opens up a new synthesis strategy to construct other types of photocatalysts with morphology design.

Keywords

Composite materials Microstructure Z-scheme Solar energy materials 

Notes

Acknowledgements

Financial supports from the Key R&D Program of Shandong Province (2017CXGC0223) and National Science and Technology Major Project (2015ZX07203-007-005-01) are gratefully acknowledged.

Supplementary material

11164_2018_3545_MOESM1_ESM.pdf (405 kb)
Supplementary material 1 (PDF 405 kb)

References

  1. 1.
    W.R. Mateker, M.D. McGehee, Adv. Mater. 29, 16 (2017)CrossRefGoogle Scholar
  2. 2.
    S.N. Wang, Q. Yang, F. Chen, J. Sun, K. Luo, F.B. Yao, X.L. Wang, D.B. Wang, X.M. Li, G.M. Zeng, Chem. Eng. J. 328, 927 (2017)CrossRefGoogle Scholar
  3. 3.
    M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W. Daud, J. Environ. Manag. 198, 78 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Hussain, S. Hussain, A. Waleed, M.M. Tavakoli, Z.L. Wang, S.H. Yang, Z.Y. Fan, M.A. Nadeem, ACS Appl. Mater. Interfaces 8, 35315 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.J. Yao, F. Lu, Y.P. Zhu, F.Y. Wei, X.T. Liu, C. Lian, S.B. Wang, J. Hazard. Mater. 297, 224 (2015)CrossRefGoogle Scholar
  6. 6.
    X.J. Guo, K.B. Wang, D. Li, J.B. Qin, Appl. Surf. Sci. 420, 792 (2017)CrossRefGoogle Scholar
  7. 7.
    R.L. Cheng, X.Q. Fan, M. Wang, M.L. Li, J.J. Tian, L.X. Zhang, RSC Adv. 6, 18990 (2016)CrossRefGoogle Scholar
  8. 8.
    A.C. Nawle, A.V. Humbe, M.K. Babrekar, S.S. Deshmukh, K.M. Jadhav, J. Alloys Compd. 695, 1573 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J Mater. Sci. Mater. Electron. 27, 9962 (2016)CrossRefGoogle Scholar
  10. 10.
    T.T. Dinh, T.Q. Nguyen, G.C. Quan, V.D.N. Nguyen, H.Q. Tran, T. Le, Int. J. Environ. Sci. Technol. 14, 2613 (2017)CrossRefGoogle Scholar
  11. 11.
    N. Helaili, G. Mitran, I. Popescu, K. Bachari, I.C. Marcu, J. Electroanal. Chem. 742, 47 (2015)CrossRefGoogle Scholar
  12. 12.
    H.T. Dang, T.M.T. Nguyen, T.T. Nguyen, S.Q. Thi, H.T. Tran, H.Q. Tran, T.K. Le, Chem. Eng. Commun. 203, 1260 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Wang, L.C. Bai, H.Y. Liu, X.F. Yu, Y.D. Yin, C.B. Gao, Adv. Funct. Mater. 28, 8 (2018)Google Scholar
  14. 14.
    S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J.W. Tang, Energy Environ. Sci. 8, 731 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  16. 16.
    J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)CrossRefGoogle Scholar
  17. 17.
    J.T. Li, N.Q. Wu, Catal. Sci. Technol. 5, 1360 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B 230, 194 (2018)CrossRefGoogle Scholar
  19. 19.
    M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Appl. Catal. B 217, 485 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Kezzim, N. Nasrallah, A. Abdi, M. Trari, Energy Convers. Manag. 5, 2800 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J Mater Sci. Mater. Electron. 27, 11017 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Fedailaine, S. Berkani, M. Trari, Korean J. Chem. Eng. 33, 2027 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Nanoscale 6, 4072 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Zhou, M.I. Guzman, J. Phys. Chem. C 120, 7349 (2016)CrossRefGoogle Scholar
  25. 25.
    R. Zhou, M.I. Guzman, J. Phys. Chem. C 118, 11649 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Ding, Q. Zhong, S. Zhang, RSC Adv. 4, 5394 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Hu, L. Jiang, C. Zhang, X. Zhang, Y. Meng, X. Wang, Appl. Phys. Lett. 104, 151602 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Zhu, D. Meng, C. Wang, G. Diao, A.C.S. Appl, Mater. Interfaces 5, 6030 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Sharma, S. Bansal, S. Singhal, RSC Adv. 5, 6006 (2015)CrossRefGoogle Scholar
  30. 30.
    H.L. Hou, F.M. Gao, L. Wang, M.H. Shang, Z.B. Yang, J.J. Zheng, W.Y. Yang, J. Mater. Chem. A 4, 6276 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Kumar, L. Rout, L.S.K. Achary, S.K. Mohanty, P. Dash, New J. Chem. 41, 10568 (2017)CrossRefGoogle Scholar
  32. 32.
    Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, Adv. Mater. 10, 1706108 (2018)CrossRefGoogle Scholar
  33. 33.
    P. Zhou, J.G. Yu, M. Jaroniec, Adv. Mater. 26, 4920 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test CentreQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China

Personalised recommendations