Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6431–6444 | Cite as

MOF derived Bi2MoO6/TiO2 nanohybrids: enhanced photocatalytic activity for Rhodamine B degradation under sunlike irradiation

  • Ting Zhou
  • Deng Xu
  • Ming Lu
  • Pengcheng Wang
  • Jie Zhu
Article
  • 59 Downloads

Abstract

Bi2MoO6/TiO2 nanohybrids were fabricated via a metal–organic frameworks(MOFs) templated method. The samples were characterized by XRD, SEM, TEM, UV–Vis and BET, and were applied to the degradation of Rhodamine B under simulated sunlight irradiation. The resultant material with specific morphology are composed of numerous Bi2MoO6 and TiO2 nanoparticles in about 5 nm, demonstrating uniform dispersion of Bi, Mo, O and Ti elements. When n(Bi2MoO6) : n(Ti) = 1: 2, the catalyst with a narrow band gap exhibits expedious photodegradation performance for RhB under simulated sunlight irradiation (91.4% in 180 min) and the reaction rate constant was 4.1 times to that of pure Bi2MoO6. The enhanced photocatalytic performances are mainly attributed to the in situ formation of TiO2 in the presence of Bi2MoO6, featuring a uniform dispersion, and the synergistic effect between the two components. The h+ and ·OH are supposed as the main active species in the degradation process.

Keywords

Bi2MoO6 TiO2 Metal–organic frameworks templated synthesis Photocatalyst Synergistic effect 

Notes

Acknowledgements

We acknowledge financial support from National Natural Science Foundation of China (NSFC, Grant Nos. 21602108, 11702141).

Supplementary material

11164_2018_3499_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 26 kb)
11164_2018_3499_MOESM2_ESM.tif (2.6 mb)
Supplementary material 2 (TIFF 2674 kb)
11164_2018_3499_MOESM3_ESM.tif (3.1 mb)
Supplementary material 3 (TIFF 3168 kb)
11164_2018_3499_MOESM4_ESM.tif (7.9 mb)
Supplementary material 4 (TIFF 8066 kb)
11164_2018_3499_MOESM5_ESM.tif (2 mb)
Supplementary material 5 (TIFF 2054 kb)
11164_2018_3499_MOESM6_ESM.tif (2.1 mb)
Supplementary material 6 (TIFF 2148 kb)

References

  1. 1.
    A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121, 1145 (1999)CrossRefGoogle Scholar
  2. 2.
    X. Xu, C. Randorn, P. Efstathiou, J.T. Irvine, Nat. Mater. 11, 59 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal. B 160, 89 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefPubMedGoogle Scholar
  5. 5.
    J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A Chem. 180, 196 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Liu, H.K. Shon, X. Sun, S. Vigneswaran, H. Nan, Appl. Surf. Sci. 257, 5813 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Li, X. Nie, Y. Gao, T. An, Appl. Catal. B 180, 726 (2016)CrossRefGoogle Scholar
  8. 8.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1955)CrossRefGoogle Scholar
  9. 9.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  10. 10.
    H.F. Cheng, B.B. Huang, Y. Dai, X.Y. Qin, X.Y. Zhang, Langmuir 26, 6618 (2010)CrossRefPubMedGoogle Scholar
  11. 11.
    J. Zhang, Q. Xu, Z.C. Feng, M.J. Li, C. Li, Angew. Chem. Int. Ed. 47, 1766 (2008)CrossRefGoogle Scholar
  12. 12.
    S.Y. Chai, Y.J. Kim, M.H. Jung, A.K. Chakraborty, D. Jungand, W.I. Lee, J. Catal. 262, 144 (2009)CrossRefGoogle Scholar
  13. 13.
    X.H. Meng, D.W. Shin, S.M. Yu, J.H. Jung, H.I. Kim, H.M. Lee, Y.H. Han, V. Bhoraskar, J.B. Yoo, CrystEngComm 12, 1754 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Zhang, C. Shao, Z. Guo, Z. Zhang, J. Mu, T. Cao, Y. Liu, A.C.S. Appl, Mater. Interfaces 3, 369 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Martha, P.C. Sahoo, K.M. Parida, RSC Adv. 5, 61535 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Kandi, S. Martha, A. Thirumurugan, K.M. Parida, ACS Omega 2, 9040 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, L. Fei, X. Jiang, C. Pan, Y. Wang, J. Am. Ceram. Soc. 94, 4157 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Murcia López, M.C. Hidalgo, J.A. Navío, G. Colón, J. Hazard. Mater. 185, 1425 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    Y.F. Hou, S.J. Liu, J.H. Zhang, X. Cheng, Y. Wang, Dalton Trans. 43, 1025 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Liu, H. Tang, H. Lv, P. Zhang, Z. Ding, S. Li, J. Guang, Powder Technol. 283, 246 (2015)CrossRefGoogle Scholar
  21. 21.
    W. Wang, D. Zhu, Z. Shen, J. Peng, J. Luo, X. Liu, Ind. Eng. Chem. Res. 55, 6373 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B 110, 17790 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang, Y. Liu, CrystEngComm 14, 605 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Tian, P. Hao, N. Wei, H. Cui, H. Liu, ACS Catal. 5, 4530 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130, 5390 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Yang, S.J. Bradley, A. Chan, G.I. Waterhouse, T. Nann, P.E. Kruger, S.G. Telfer, J. Am. Chem. Soc. 138, 11872 (2016)CrossRefPubMedGoogle Scholar
  27. 27.
    R.V. Jagadeesh, K. Murugesan, A.S. Alshammari, H. Neumann, M.-M. Pohl, J. Radnik, M. Beller, Science 358, 326 (2017)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Zhang, A. Han, Y. Zhai, J. Zhang, W. Cheong, D. Wang, Y. Li, Chem. Commun. 53, 9490 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, J. Mater. Chem. A 37, 11473 (2013)CrossRefGoogle Scholar
  30. 30.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energ. Environ. Sci. 7, 2831 (2014)CrossRefGoogle Scholar
  31. 31.
    F. Ke, L. Wang, J. Zhu, Nano Res. 8, 1834 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Wang, X. Yuan, Y. Wu, G. Zeng, H. Dong, X. Chen, L. Leng, Z. Wu, L. Peng, Appl. Catal. B: Environ. 186, 19 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Ma, P.-Y. Guan, Q.-Y. Li, M. Zhang, S.-Q. Zang, A.C.S. Appl, Mater. Interfaces 8, 26794 (2016)CrossRefGoogle Scholar
  34. 34.
    S.N. Kim, J. Kim, H.Y. Kim, H.Y. Cho, W.S. Ahn, Catal. Today 204, 85 (2013)CrossRefGoogle Scholar
  35. 35.
    S.R. Zhu, P.F. Liu, M.K. Wu, W.N. Zhao, G.C. Li, K. Tao, F.Y. Yi, L. Han, Dalton Trans. 45, 17521 (2016)CrossRefPubMedGoogle Scholar
  36. 36.
    K. Uchida, A. Ayame, Surf. Sci. 357, 170 (1996)CrossRefGoogle Scholar
  37. 37.
    H.Y. Ma, T. Dong, F.P. Wang, W. Zhang, B.B. Zhou, Electrochim. Acta 51, 4965 (2006)CrossRefGoogle Scholar
  38. 38.
    C. Meng, Z. Liu, T. Zhang, J. Zhai, Green Chem. 17, 2764 (2015)CrossRefGoogle Scholar
  39. 39.
    W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Appl. Catal. B 69, 138 (2007)CrossRefGoogle Scholar
  40. 40.
    Z. Song, J. Hrbek, R. Osgood, Nano Lett. 5, 1327 (2005)CrossRefPubMedGoogle Scholar
  41. 41.
    H. Li, T.X. Zhang, C. Pan, C.C. Pu, X.Y. Hu, E.Z. Liu, J. Fan, Appl. Surf. Sci. 391, 303 (2016)CrossRefGoogle Scholar
  42. 42.
    R. Kashfi-Sadabad, S. Yazdani, A. Alemi, T.D. Huan, R. Ramprasad, M.T. Pettes, Langmuir 32, 10967 (2016)CrossRefGoogle Scholar
  43. 43.
    T. Jardiel, M. Villegas, A. Caballero, D. Suvorov, A.C. Caballero, J. Am. Ceram. Soc. 91, 278 (2008)CrossRefGoogle Scholar
  44. 44.
    J. Yang, X. Niu, S. An, W. Chen, J. Wang, W. Liu, RSC. Adv. 7, 2943 (2017)CrossRefGoogle Scholar
  45. 45.
    A.A. Alemi, R. Kashfi, B. Shabani, J. Mol. Catal. A: Chem. 392, 290 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Chen, G. Tian, Y. Shi, Y. Xiao, H. Fu, Appl. Catal. B: Environ. 164, 40 (2015)CrossRefGoogle Scholar
  47. 47.
    N. Li, L. Zhu, W.D. Zhang, Y.X. Yu, W.H. Zhang, M.F. Hou, J. Alloys Comp. 509, 9770 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.College of SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations