Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6401–6418 | Cite as

Enhanced visible-light photoelectrochemical and photoelectrocatalytic activity of nano-TiO2/polyimide/Ni foam photoanode

  • Yonglin Lei
  • Jichuan Huo
Article
  • 53 Downloads

Abstract

We report a novel method for fabrication of a nano-TiO2/polyimide (PI)/Ni foam photoanode. Characterization results indicated that porous nanostructured TiO2 films were successfully immobilized and dispersed into the indivisible PI/Ni foam substrate. The prepared photoanode exhibited intense visible-light absorption from 400 to 700 nm, high photoinduced current of 175 μA/cm2, and photoelectrocatalytic (PEC) efficiency of 98.8 % for degradation of methylene blue (MB) within 180 min of simulated solar light irradiation. Moreover, the TiO2/PI/Ni foam photoanode showed obvious visible-light PEC performance, mainly attributed to formation of TiO2–PI charge-transfer (CT) complexes and high separation efficiency of photoinduced charge carriers by the applied bias potential. This study provides a new perspective for preparation of cheap, high-performance visible-light photoelectrocatalytic films.

Keywords

Nano-TiO2 Polyimide Ni foam Visible light Photoelectrocatalysis 

Notes

Acknowledgements

This work was supported by the National Science and Technology Support Program (2014BAB15B02) and Engineering Research Center of Biomass Materials, Ministry of Education, China (Grant No. 14tdsc03).

References

  1. 1.
    P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Sudhagar, A. Devadoss, T. Song, P. Lakshmipathiraj, H. Han, V.V. Lysak, C. Terashima, K. Nakata, A. Fujishima, U. Paik, Y.S. Kang, Phys. Chem. Chem. Phys. 16, 17748 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A Gen. 489, 1 (2015)CrossRefGoogle Scholar
  4. 4.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692 (2011)CrossRefPubMedGoogle Scholar
  5. 5.
    Q. Wang, J. Qiao, R. Jin, X. Xu, S. Gao, J. Power Sources 277, 480 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Li, X. Li, Q. Zhao, Y. Shi, W. Teng, Appl. Catal. B Environ. 156–157, 362 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Nanoscale Res. Lett. 10, 54 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    C. Pablos, J. Marugán, R.V. Grieken, C. Adán, A. Riquelme, J. Palma, Electrochim. Acta 130, 261 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Takashi, S. Yuki, Y. Hiromi, Adv. Mater. 24, 3697 (2012)CrossRefGoogle Scholar
  10. 10.
    X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Light Sci. Appl. 5, e 10617 (2016)CrossRefGoogle Scholar
  11. 11.
    P. Rodenas, T. Song, P. Sudhagar, G. Marzari, H. Han, L. Badia-Bou, S. Gimenez, F. Fabregat-Santiago, I. MoraSero, J. Bisquert, U. Paik, Y.S. Kang, Adv. Energy Mater. 3, 176 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Nano Lett. 13, 14 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    L.G. Bettini, F.D. Foglia, P. Milani, P. Piseri, Int. J. Hydrogen Energy 40, 6013 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Yu, X. Han, Z.H. Zhao, J. Zhang, W.B. Guo, C.F. Pan, A.X. Li, H. Liu, Z.L. Wang, Nano Energy 11, 19 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Sudhagar, A. Devadoss, K. Nakata, C. Terashima, A. Fujishima, J. Electrochem. Soc. 162, 108 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, J. Am. Chem. Soc. 131, 4230 (2009)CrossRefPubMedGoogle Scholar
  17. 17.
    A. Devadoss, P. Sudhagar, S. Das, S.Y. Lee, C. Terashima, K. Nakata, A. Fujishima, W. Choi, Y.S. Kang, U. Paik, ACS Appl. Mater. Interfaces 6, 4864 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    A. Devadoss, A. Kuragano, C. Terashima, P. Sudhagar, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, J. Mater. Chem. B 4, 220 (2016)CrossRefGoogle Scholar
  19. 19.
    C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, ACS Nano 4, 6425 (2010)CrossRefPubMedGoogle Scholar
  20. 20.
    R. Goei, T.T. Lim, Water Res. 59, 207 (2014)CrossRefPubMedGoogle Scholar
  21. 21.
    S.C. Hayden, N.K. Allam, M.A. El-Sayed, J. Am. Chem. Soc. 132, 14406 (2010)CrossRefPubMedGoogle Scholar
  22. 22.
    X.W. Cheng, H.L. Liu, Q.H. Chen, J.J. Li, P. Wang, Electrochim. Acta 103, 134 (2013)CrossRefGoogle Scholar
  23. 23.
    M.X. Sun, X.L. Cui, Electrochem. Commun. 20, 133 (2012)CrossRefGoogle Scholar
  24. 24.
    T.C. Kaspar, A. Ney, A.N. Mangham, S.M. Heald, Y. Joly, V. Ney, F. Wilhelm, A. Rogalev, F. Yakou, S.A. Chambers, Phys. Rev. B 86, 3089 (2012)CrossRefGoogle Scholar
  25. 25.
    Y.L. Lei, C. Zhang, H. Lei, J.C. Huo, J. Colloid Interface Sci. 406, 178 (2013)CrossRefPubMedGoogle Scholar
  26. 26.
    X. Fan, J. Wan, E.Z. Liu, L. Sun, Y. Hu, H. Li, X.Y. Hu, J. Fan, Ceram. Int. 41, 5107 (2015)CrossRefGoogle Scholar
  27. 27.
    C. Pandiyarajan, A. Pandikumar, R. Ramaraj, Nanotechnology 24, 435401 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    G. Kim, W.Y. Choi, Appl. Catal. B: Environ. 100, 77 (2010)CrossRefGoogle Scholar
  29. 29.
    H.W. Geng, C.M. Hill, S.L. Zhu, H.Y. Liu, L.B. Huang, S.L. Pan, RSC Adv. 3, 2306 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Vinodgopal, S. Hotchandani, P.V. Kamat, J. Phys. Chem. 97, 9040 (1993)CrossRefGoogle Scholar
  31. 31.
    V. Jaeger, W. Wilson, V. Subramanian, Appl. Catal. B Environ. 110, 6 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Zhang, X. Liu, Y. Wang, P. Liu, W. Cai, G. Zhu, H. Yang, H. Zhao, J. Mater. Chem. A 1, 2646 (2013)CrossRefGoogle Scholar
  33. 33.
    I. Tantis, L. Bousiakou, Z. Frontistis, D. Mantzavinos, I. Konstantinou, M. Antonopoulou, G.A. Karikas, P. Lianos, J. Hazard. Mater. 294, 57 (2015)CrossRefPubMedGoogle Scholar
  34. 34.
    S. Kalathil, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, Nanoscale 5, 6323 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    Y. Bennani, M.C.F.M. Peters, P.W. Appel, L.C. Rietveld, Electrochim. Acta 182, 604 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Li, L. Wang, X. Kong, B. Ma, Y. Shi, C. Zhan, Y. Qiu, Langmuir 25, 11162 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    N. Lu, S. Chen, H. Wang, X. Quan, H. Zhao, J. Solid State Chem. 181, 2852 (2008)CrossRefGoogle Scholar
  38. 38.
    Y.H. Chang, C.T. Lin, T.Y. Chen, C.L. Hsu, Y.H. Lee, Adv. Mater. 25, 756 (2013)CrossRefPubMedGoogle Scholar
  39. 39.
    C.J. Weng, J.Y. Huang, K.Y. Huang, Y.S. Jhuoa, M.H. Tsai, J.M. Ye, Electrochim. Acta 55, 8430 (2010)CrossRefGoogle Scholar
  40. 40.
    C.J. Chen, C.L. Tsai, G.S. Liou, J. Mater. Chem. C 2, 2842 (2014)CrossRefGoogle Scholar
  41. 41.
    Y.L. Lei, Y.J. Shu, J.H. Peng, Y.J. Tang, J.C. Huo, E-polymers 16, 295 (2016)Google Scholar
  42. 42.
    Y.L. Lei, Y.J. Shu, J.H. Peng, Y.J. Tang, J.C. Huo, Polym. Sci. Ser. B 57, 576 (2015)CrossRefGoogle Scholar
  43. 43.
    L.Q. Jing, Y.C. Qu, B.Q. Wang, S.D. Li, B.J. Jiang, L.B. Yang, W. Fu, H.G. Fu, J.Z. Sun, Sol. Energy Mater. Sol. Cells 90, 1773 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations