Enhanced visible-light photoelectrochemical and photoelectrocatalytic activity of nano-TiO2/polyimide/Ni foam photoanode
- 65 Downloads
Abstract
We report a novel method for fabrication of a nano-TiO2/polyimide (PI)/Ni foam photoanode. Characterization results indicated that porous nanostructured TiO2 films were successfully immobilized and dispersed into the indivisible PI/Ni foam substrate. The prepared photoanode exhibited intense visible-light absorption from 400 to 700 nm, high photoinduced current of 175 μA/cm2, and photoelectrocatalytic (PEC) efficiency of 98.8 % for degradation of methylene blue (MB) within 180 min of simulated solar light irradiation. Moreover, the TiO2/PI/Ni foam photoanode showed obvious visible-light PEC performance, mainly attributed to formation of TiO2–PI charge-transfer (CT) complexes and high separation efficiency of photoinduced charge carriers by the applied bias potential. This study provides a new perspective for preparation of cheap, high-performance visible-light photoelectrocatalytic films.
Keywords
Nano-TiO2 Polyimide Ni foam Visible light PhotoelectrocatalysisNotes
Acknowledgements
This work was supported by the National Science and Technology Support Program (2014BAB15B02) and Engineering Research Center of Biomass Materials, Ministry of Education, China (Grant No. 14tdsc03).
References
- 1.P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)CrossRefGoogle Scholar
- 2.P. Sudhagar, A. Devadoss, T. Song, P. Lakshmipathiraj, H. Han, V.V. Lysak, C. Terashima, K. Nakata, A. Fujishima, U. Paik, Y.S. Kang, Phys. Chem. Chem. Phys. 16, 17748 (2014)CrossRefPubMedGoogle Scholar
- 3.K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A Gen. 489, 1 (2015)CrossRefGoogle Scholar
- 4.K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692 (2011)CrossRefPubMedGoogle Scholar
- 5.Q. Wang, J. Qiao, R. Jin, X. Xu, S. Gao, J. Power Sources 277, 480 (2015)CrossRefGoogle Scholar
- 6.T. Li, X. Li, Q. Zhao, Y. Shi, W. Teng, Appl. Catal. B Environ. 156–157, 362 (2014)CrossRefGoogle Scholar
- 7.M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Nanoscale Res. Lett. 10, 54 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
- 8.C. Pablos, J. Marugán, R.V. Grieken, C. Adán, A. Riquelme, J. Palma, Electrochim. Acta 130, 261 (2014)CrossRefGoogle Scholar
- 9.K. Takashi, S. Yuki, Y. Hiromi, Adv. Mater. 24, 3697 (2012)CrossRefGoogle Scholar
- 10.X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Light Sci. Appl. 5, e 10617 (2016)CrossRefGoogle Scholar
- 11.P. Rodenas, T. Song, P. Sudhagar, G. Marzari, H. Han, L. Badia-Bou, S. Gimenez, F. Fabregat-Santiago, I. MoraSero, J. Bisquert, U. Paik, Y.S. Kang, Adv. Energy Mater. 3, 176 (2013)CrossRefGoogle Scholar
- 12.Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Nano Lett. 13, 14 (2013)CrossRefPubMedGoogle Scholar
- 13.L.G. Bettini, F.D. Foglia, P. Milani, P. Piseri, Int. J. Hydrogen Energy 40, 6013 (2015)CrossRefGoogle Scholar
- 14.X. Yu, X. Han, Z.H. Zhao, J. Zhang, W.B. Guo, C.F. Pan, A.X. Li, H. Liu, Z.L. Wang, Nano Energy 11, 19 (2015)CrossRefGoogle Scholar
- 15.P. Sudhagar, A. Devadoss, K. Nakata, C. Terashima, A. Fujishima, J. Electrochem. Soc. 162, 108 (2015)CrossRefGoogle Scholar
- 16.Y.Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, J. Am. Chem. Soc. 131, 4230 (2009)CrossRefPubMedGoogle Scholar
- 17.A. Devadoss, P. Sudhagar, S. Das, S.Y. Lee, C. Terashima, K. Nakata, A. Fujishima, W. Choi, Y.S. Kang, U. Paik, ACS Appl. Mater. Interfaces 6, 4864 (2014)CrossRefPubMedGoogle Scholar
- 18.A. Devadoss, A. Kuragano, C. Terashima, P. Sudhagar, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, J. Mater. Chem. B 4, 220 (2016)CrossRefGoogle Scholar
- 19.C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, ACS Nano 4, 6425 (2010)CrossRefPubMedGoogle Scholar
- 20.R. Goei, T.T. Lim, Water Res. 59, 207 (2014)CrossRefPubMedGoogle Scholar
- 21.S.C. Hayden, N.K. Allam, M.A. El-Sayed, J. Am. Chem. Soc. 132, 14406 (2010)CrossRefPubMedGoogle Scholar
- 22.X.W. Cheng, H.L. Liu, Q.H. Chen, J.J. Li, P. Wang, Electrochim. Acta 103, 134 (2013)CrossRefGoogle Scholar
- 23.M.X. Sun, X.L. Cui, Electrochem. Commun. 20, 133 (2012)CrossRefGoogle Scholar
- 24.T.C. Kaspar, A. Ney, A.N. Mangham, S.M. Heald, Y. Joly, V. Ney, F. Wilhelm, A. Rogalev, F. Yakou, S.A. Chambers, Phys. Rev. B 86, 3089 (2012)CrossRefGoogle Scholar
- 25.Y.L. Lei, C. Zhang, H. Lei, J.C. Huo, J. Colloid Interface Sci. 406, 178 (2013)CrossRefPubMedGoogle Scholar
- 26.X. Fan, J. Wan, E.Z. Liu, L. Sun, Y. Hu, H. Li, X.Y. Hu, J. Fan, Ceram. Int. 41, 5107 (2015)CrossRefGoogle Scholar
- 27.C. Pandiyarajan, A. Pandikumar, R. Ramaraj, Nanotechnology 24, 435401 (2013)CrossRefPubMedGoogle Scholar
- 28.G. Kim, W.Y. Choi, Appl. Catal. B: Environ. 100, 77 (2010)CrossRefGoogle Scholar
- 29.H.W. Geng, C.M. Hill, S.L. Zhu, H.Y. Liu, L.B. Huang, S.L. Pan, RSC Adv. 3, 2306 (2013)CrossRefGoogle Scholar
- 30.K. Vinodgopal, S. Hotchandani, P.V. Kamat, J. Phys. Chem. 97, 9040 (1993)CrossRefGoogle Scholar
- 31.V. Jaeger, W. Wilson, V. Subramanian, Appl. Catal. B Environ. 110, 6 (2011)CrossRefGoogle Scholar
- 32.H. Zhang, X. Liu, Y. Wang, P. Liu, W. Cai, G. Zhu, H. Yang, H. Zhao, J. Mater. Chem. A 1, 2646 (2013)CrossRefGoogle Scholar
- 33.I. Tantis, L. Bousiakou, Z. Frontistis, D. Mantzavinos, I. Konstantinou, M. Antonopoulou, G.A. Karikas, P. Lianos, J. Hazard. Mater. 294, 57 (2015)CrossRefPubMedGoogle Scholar
- 34.S. Kalathil, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, Nanoscale 5, 6323 (2013)CrossRefPubMedGoogle Scholar
- 35.Y. Bennani, M.C.F.M. Peters, P.W. Appel, L.C. Rietveld, Electrochim. Acta 182, 604 (2015)CrossRefGoogle Scholar
- 36.J. Li, L. Wang, X. Kong, B. Ma, Y. Shi, C. Zhan, Y. Qiu, Langmuir 25, 11162 (2009)CrossRefPubMedGoogle Scholar
- 37.N. Lu, S. Chen, H. Wang, X. Quan, H. Zhao, J. Solid State Chem. 181, 2852 (2008)CrossRefGoogle Scholar
- 38.Y.H. Chang, C.T. Lin, T.Y. Chen, C.L. Hsu, Y.H. Lee, Adv. Mater. 25, 756 (2013)CrossRefPubMedGoogle Scholar
- 39.C.J. Weng, J.Y. Huang, K.Y. Huang, Y.S. Jhuoa, M.H. Tsai, J.M. Ye, Electrochim. Acta 55, 8430 (2010)CrossRefGoogle Scholar
- 40.C.J. Chen, C.L. Tsai, G.S. Liou, J. Mater. Chem. C 2, 2842 (2014)CrossRefGoogle Scholar
- 41.Y.L. Lei, Y.J. Shu, J.H. Peng, Y.J. Tang, J.C. Huo, E-polymers 16, 295 (2016)Google Scholar
- 42.Y.L. Lei, Y.J. Shu, J.H. Peng, Y.J. Tang, J.C. Huo, Polym. Sci. Ser. B 57, 576 (2015)CrossRefGoogle Scholar
- 43.L.Q. Jing, Y.C. Qu, B.Q. Wang, S.D. Li, B.J. Jiang, L.B. Yang, W. Fu, H.G. Fu, J.Z. Sun, Sol. Energy Mater. Sol. Cells 90, 1773 (2006)CrossRefGoogle Scholar