Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6369–6385 | Cite as

Magnetic infrared responsive photocatalyst: fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+,Tm3+/TiO2/Fe3O4@SiO2 composite

  • Zhangxu Chen
  • Ming-Lai FuEmail author
  • Xiao-Dan Huang
  • Baoling YuanEmail author
  • Jia-Cheng E. Yang


To enhance photocatalytic activity spectra area of the TiO2 based photocatalyst, and to separate and recycle photocatalyst easily, magnetic photocatalyst was prepared with β-NaYF4:Yb3+,Tm3+, TiO2, Fe3O4 as carriers, and tetraethyl orthosilicate as precursor. The magnetic infrared responsive photocatalysts were thoroughly characterized by field emission scanning electron microscopy, X-ray diffraction, a fluorescence spectrometer and UV–Vis–NIR diffuse reflectance spectroscopy. They showed that the composite of β-NaYF4:Yb3+,Tm3+/TiO2/Fe3O4@SiO2 (UCTFS) emits visible luminescence upon 980 nm excitation, and energy transfer from β-NaYF4:Yb3+,Tm3+ to TiO2 was verified. The photocatalytic activities of the UCTFS were studied by orthogonal experiments for photodegradating methylene blue (MB). The degradation rate of MB can reach 86.69% under the optimal conditions. After the four recycles, the degradation rate remained 52.72%. It also showed that 50.27% of the degradation efficiency of phenol can be obtained under the same experimental parameters. These results suggest that magnetic UCTFS composite is stable and a magnetic NIR-driven photocatalyst for degradation of organic pollutants. Moreover, the NIR driven photocatalytic mechanism of this reported composite was proposed. The strategy suggested here may be indicated for the effective fabrication of magnetic NIR-driven photocatalyst for application in the water purification by full spectra of solar energy.


β-NaYF4:Yb3+,Tm3+/TiO2/Fe3O4@SiO2 Upconversion Magnetic NIR-driven Photocatalyst 



This work is supported by the National Science Foundation of China (51478449, 51778598), Fujian Provincial Natural Science Foundation (2015J01644, 2017J01590, 2017J01710), Scientific Research Plan of Education Bureau of Fujian Province (JAT160431), Projects of Putian University (2015060, 2016015, 2016065), National College Students’ Innovation and Entrepreneurship Training Program Project (201711498008, 201711498006, 201811498011), and Fujian college Students’ Innovation and Entrepreneurship Training Program Project (201711498037).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

11164_2018_3495_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1025 kb)


  1. 1.
    Z.Y. Zhao, J. Zuo, L.L. Fan, G. Zillante, Renew. Energy 36, 24 (2011)CrossRefGoogle Scholar
  2. 2.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, J. Renew. Sustain. Energy 11, 401 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Furukawa, T. Shishido, K. Teramura, T. Tanaka, ACS Catal. 2, 175 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Li, X. Feng, J. Fei, P. Cai, J. Huang, J. Li, J. Mater. Chem. 4, 12197 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Fei, J. Li, Adv. Mater. 27, 314 (2015)CrossRefPubMedGoogle Scholar
  7. 7.
    C. Ma, L. Wang, Z. Guo, Y. Lv, W. Chen, H. Ming, P. Ma, J. Wang, Colloids Surf. A 538, 94 (2018)CrossRefGoogle Scholar
  8. 8.
    A. Gossard, F. Frances, Colloids Surf. A 522, 425 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Phys. Rev. B 61, 7459 (2000)CrossRefGoogle Scholar
  10. 10.
    J.T. Li, S.K. Cushing, P. Zheng, F.K. Meng, D. Chu, N.Q. Wu, Nat. Commun. 4, 2691 (2013)CrossRefGoogle Scholar
  11. 11.
    S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, J. Am. Chem. Soc. 134, 15033 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Y.N. Tang, W.H. Di, X.S. Zhai, R.Y. Yang, W.P. Qin, ACS Catal. 3, 405 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Shiraishi, H. Sakamoto, K. Fujiwara, S. Ichikawa, T. Hirai, ACS Catal. 4, 2418 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Vignesh, M. Rajarajan, A. Suganthi, J. Ind. Eng. Chem. 20, 3826 (2014)CrossRefGoogle Scholar
  15. 15.
    D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 134, 6309 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    M. Luo, X. Qi, T. Ren, Y. Huang, A.A. Keller, H. Wang, B. Wu, H. Jin, F. Li, Colloids Surf. A 533, 9 (2017)CrossRefGoogle Scholar
  17. 17.
    J.J. Zhang, Y.H. Wu, J.Y. Mei, G.P. Zheng, T.T. Yan, X.C. Zheng, P. Liu, X.X. Guan, Photochem. Photobiol. Sci. 15, 1012 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    L.L. Hao, M.Q. Hu, X.Q. Xiong, Y.M. Xu, Photochem. Photobiol. Sci. 15, 1299 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    G.Y. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Ågren, P.N. Prasad, ACS Nano 4, 3163 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    S. Heer, K. Kömpe, H. Güdel, M. Haase, Adv. Mater. 16, 2102 (2004)CrossRefGoogle Scholar
  21. 21.
    U. Bazylińska, D. Wawrzyńczyk, Colloids Surf. A 532, 556 (2017)CrossRefGoogle Scholar
  22. 22.
    L.Y. Zeng, Y.W. Pan, Y. Tian, X. Wang, W.Z. Ren, S.J. Wang, G.M. Lu, A.G. Wu, Biomaterials 57, 93 (2015)CrossRefPubMedGoogle Scholar
  23. 23.
    Y.D. Yang, P.W. Zhou, W. Xu, S. Xu, Y.O. Jiang, X. Chen, H.W. Song, J. Mater. Chem. C 4, 659 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.W. Wang, Y.H. Zhu, X.L. Yang, J.H. Shen, X.Q. Li, S.H. Qian, C.Z. Li, Electrochim. Acta 211, 92 (2016)CrossRefGoogle Scholar
  25. 25.
    M.D. LuoShan, L.H. Bai, C.H. Bu, X.L. Liu, Y.D. Zhu, K.M. Guo, R.H. Jiang, M.Y. Li, X.Z. Zhao, J. Power Sources 307, 468 (2016)CrossRefGoogle Scholar
  26. 26.
    Y.M. Ma, H.L. Liu, Z.Z. Han, L.B. Yang, J.H. Liu, J. Mater. Chem. A 3, 14642 (2015)CrossRefGoogle Scholar
  27. 27.
    J.L. Hu, H.S. Qian, J.J. Li, Y. Hu, Z.Q. Li, S.H. Yu, Part. Part. Syst. Char. 30, 306 (2013)CrossRefGoogle Scholar
  28. 28.
    D.X. Xu, Z.W. Lian, M.L. Fu, B.L. Yuan, J.W. Shi, H.J. Cui, Appl. Catal. B Environ. 142–143, 377 (2013)CrossRefGoogle Scholar
  29. 29.
    Y.J. Sun, Y. Chen, L.J. Tian, Y. Yu, X.G. Kong, J.W. Zhao, H. Zhang, Nanotechnology 18, 447 (2007)Google Scholar
  30. 30.
    D. Hu, M. Chen, Y. Gao, F.Y. Li, L.M. Wu, J. Mater. Chem. 21, 11276 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Shen, X.M. Guo, L. Wu, M. Wang, X.S. Wang, F.F. Kong, H.J. Shen, M. Xie, Y.R. Ge, Y. Jin, J. Mater. Chem. B 2, 5775 (2014)CrossRefGoogle Scholar
  32. 32.
    H.J. Cui, J.K. Cai, H. Zhao, B.L. Yuan, C.L. Ai, M.L. Fu, J. Colloid Interface Sci. 279, 26 (2014)Google Scholar
  33. 33.
    H.J. Cui, J.K. Cai, H. Zhao, B.L. Yuan, C.L. Ai, M.L. Fu, J. Colloid Interface Sci. 425, 131 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    Z. Liu, F. Chen, Y. Gao, Y. Liu, P. Fang, S. Wang, J. Mater. Chem. A 1, 7027 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Liu, Z.K. Sun, Y.H. Deng, Y. Zou, C.Y. Li, X.H. Guo, L.Q. Xiong, Y. Gao, F.Y. Li, D.Y. Zhao, Angew. Chem. Int. Ed. 48, 5875 (2009)CrossRefGoogle Scholar
  36. 36.
    S. Shen, F.F. Kong, X.M. Guo, L. Wu, H.J. Shen, M. Xie, X.S. Wang, Y. Jin, Y.R. Ge, Nanoscale 5, 8056 (2013)CrossRefPubMedGoogle Scholar
  37. 37.
    K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. A Chem. 134, 139 (2000)CrossRefGoogle Scholar
  38. 38.
    K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochem. Commun. 2, 207 (2000)CrossRefGoogle Scholar
  39. 39.
    G.Y. Shi, Y.F. Mao, G.Z. Ren, L.J. Gong, Z.G. Zhi, Opt. Commun. 332, 219 (2014)CrossRefGoogle Scholar
  40. 40.
    L. Zhang, L. Mao, Z. Lu, Y. Deng, N. He, J. Nanosci. Nanotechnol. 16, 1220 (2016)CrossRefPubMedGoogle Scholar
  41. 41.
    A. Maleki, T. Kari, M. Aghaei, J. Porous Mater. 24, 1481 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, J. Energy Chem. 26, 17 (2017)CrossRefGoogle Scholar
  43. 43.
    X. Yu, S. Liu, J. Yu, Appl. Catal. B Environ. 104, 12 (2011)CrossRefGoogle Scholar
  44. 44.
    Y.H. Deng, Y. Cai, Z.K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D.Y. Zhao, J. Am. Chem. Soc. 132, 8466 (2010)CrossRefPubMedGoogle Scholar
  45. 45.
    L. Li, Y.J. Feng, Y.S. Li, W.R. Zhao, J.L. Shi, Angew. Chem. Int. Ed. 48, 5888 (2009)CrossRefGoogle Scholar
  46. 46.
    J. Cai, X. Wu, S. Li, F. Zheng, L. Zhu, Z. Lai, ACS Appl. Mater. Interfaces 7, 3764 (2015)CrossRefPubMedGoogle Scholar
  47. 47.
    R. Balaji, S. Kumar, K.L. Reddy, V. Sharma, K. Bhattacharyya, V. Krishnan, J. Alloys Compd. 724, 481 (2017)CrossRefGoogle Scholar
  48. 48.
    Y. Lv, L. Yue, Q. Li, B. Shao, S. Zhao, H. Wang, S. Wu, Z. Wang, Dalton Trans. 47, 1666 (2018)CrossRefPubMedGoogle Scholar
  49. 49.
    D. Mitoraj, H. Kisch, Angew. Chem. Int. Ed. 47, 9975 (2008)CrossRefGoogle Scholar
  50. 50.
    Z.X. Li, F.B. Shi, T. Zhang, H.S. Wu, L.D. Sun, C.H. Yan, Chem. Commun. 47, 8109 (2011)CrossRefGoogle Scholar
  51. 51.
    T. Jiang, W.P. Qin, W.H. Di, R.Y. Yang, D.M. Liu, X.S. Zhai, G.S. Qin, CrystEngComm 14, 2302 (2012)CrossRefGoogle Scholar
  52. 52.
    G.F. Wang, W.P. Qin, L.L. Wang, G.D. Wei, P.F. Zhu, R.J. Kim, Opt. Express 16, 11907 (2008)CrossRefPubMedGoogle Scholar
  53. 53.
    F. Shi, J.S. Wang, D.S. Zhang, G.S. Qin, W.P. Qin, J. Mater. Chem. 21, 13413 (2011)CrossRefGoogle Scholar
  54. 54.
    F. Shi, J.S. Wang, X.S. Zhai, D. Zhao, W.P. Qin, CrystEngComm 13, 3782 (2011)CrossRefGoogle Scholar
  55. 55.
    N. Liu, W.P. Qin, G.S. Qin, T. Jiang, D. Zhao, Chem. Commun. 47, 7671 (2011)CrossRefGoogle Scholar
  56. 56.
    X.Y. Guo, C.F. Chen, S.Y. Yin, W.Y. Song, F. Shi, W.P. Qin, J. Photochem. Photobiol. A Chem. 297, 14 (2015)CrossRefGoogle Scholar
  57. 57.
    Q. Tian, W. Yao, Z. Wu, J. Liu, L. Liu, W. Wu, C. Jiang, J. Mater. Chem. A 5, 23566 (2017)CrossRefGoogle Scholar
  58. 58.
    W. Wang, Y. Yu, T. An, G. Li, H.Y. Yip, J.C. Yu, P.K. Wong, Environ. Sci. Technol. 46, 4599 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Urban Pollutant Conversion, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging ContaminantsPutian UniversityPutianChina
  3. 3.Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  4. 4.College of Civil EngineeringHuaqiao UniversityXiamenChina

Personalised recommendations