Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6339–6349 | Cite as

Synthesis, characterization, and antibacterial, antioxidant, and anticancer activity of di-µ-chlorobis[dichlorocurcuminatoniobium(V)] dihydrate

  • Zari Nowzari
  • Alireza KhorshidiEmail author


A novel binuclear complex of niobium(V) containing two curcuminato, and two bridging chloro ligands, was synthesized and characterized by means of nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR), Fourier-transform infrared spectroscopy, inductively coupled plasma–atomic emission spectroscopy, thermogravimetric analysis, and ultraviolet–visible (UV–Vis) spectroscopy. Di-µ-chlorobis[dichlorocurcuminatoniobium(V)] dihydrate was screened for medicinal applications, including its antioxidant activity, antibacterial activity, and an in vitro test on human breast cancer cell line (MCF-7) and normal fibroblast cells. The results showed that complexation with curcumin positively influenced the anticancer, antibacterial, and antioxidant activity of niobium(V) chloride. Di-µ-chlorobis[dichlorocurcuminatoniobium(V)] dihydrate showed significant antibacterial activity against Gram-negative Escherichia coli and Pseudomonas aeruginosa, in comparison with reference drugs including tetracycline, chloramphenicol, and ampicillin as positive controls. Antioxidant activity tests revealed radical scavenging activity of the complex at a wide range of concentrations comparable to that of ascorbic acid as standard. Finally, it was found that the cytotoxicity of the complex against cancer cells was reasonably higher than normal fibroblast cells.


Niobium Curcumin Complex Antibacterial Anticancer Antioxidant 



Partial support of this study by the Research Council of University of Guilan is gratefully acknowledged. A.K. is grateful to Dr. B. Heidari for generous support with data analysis.


  1. 1.
    R.L. Siegel, K.D. Miller, A. Jemal, CA-Cancer J. Clin. 66, 7 (2016)CrossRefPubMedGoogle Scholar
  2. 2.
    K. Bairwa, J. Grover, M. Kania, S.M. Jachak, RSC Adv. 4, 13946 (2014)CrossRefGoogle Scholar
  3. 3.
    G.P. Nagaraju, S. Aliya, S.F. Zafar, R. Basha, R. Diaz, B.F. El-Rayes, Integr. Biol. 4, 996 (2012)CrossRefGoogle Scholar
  4. 4.
    C.D. Mock, B.C. Jordan, C. Selvam, RSC Adv. 5, 75575 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    M. Salem, S. Rohani, E.R. Gillies, RSC Adv. 4, 10815 (2014)CrossRefGoogle Scholar
  6. 6.
    N.N. Valand, M.B. Patel, S.K. Menon, RSC Adv. 5, 8739 (2015)CrossRefGoogle Scholar
  7. 7.
    A.E. Bulboacă, S.D. Bolboacă, I.C. Stănescu, C.A. Sfrângeu, A.C. Bulboacă, Biomed. Res. Int. 2017, 4754701 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    A. Papadimitriou, I. Ketikidis, M.K. Stathopoulou, C. Banti, C. Papachristodoulou, L. Zoumpoulakis, S. Agathopoulos, G. Vagenas, S. Hadjikakou, Mater. Sci. Eng. C 84, 118 (2018)CrossRefGoogle Scholar
  9. 9.
    S.M. Abdel-Hafez, R.M. Hathout, O.A. Sammour, Colloids Surf. B Biointerfaces 167, 63 (2018)CrossRefPubMedGoogle Scholar
  10. 10.
    R.K. Basniwal, H.S. Buttar, V. Jain, N. Jain, J. Agric. Food Chem. 59, 2056 (2011)CrossRefPubMedGoogle Scholar
  11. 11.
    F. Donsì, Y. Wang, J. Li, Q. Huang, J. Agric. Food Chem. 58, 2848 (2010)CrossRefPubMedGoogle Scholar
  12. 12.
    L. Chen, G. Bai, S. Yang, R. Yang, G. Zhao, C. Xu, W. Leung, Food Res. Int. 62, 1147 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Xie, J. Jiang, P. Davoodi, M. Srinivasan, C.-H. Wang, Chem. Eng. Sci. 125, 32 (2015)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Wanninger, V. Lorenz, A. Subhan, F.T. Edelmann, Chem. Soc. Rev. 44, 4986 (2015)CrossRefPubMedGoogle Scholar
  15. 15.
    K. Sharma, S. Chandra, D. Basu, Inorg. Chim. Acta 135, 47 (1987)CrossRefGoogle Scholar
  16. 16.
    K. Krishnankutty, P. Venugopalan, Synth. React. Inorg. Met. 28, 1313 (1998)CrossRefGoogle Scholar
  17. 17.
    Y. Mawani, C. Orvig, J. Inorg. Biochem. 132, 52 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    A. Esayed, D. Northwood, Int. J. Hydrog. Energy 17, 41 (1992)CrossRefGoogle Scholar
  19. 19.
    A. Khorshidi, N. Sadeghi, Res. Chem. Intermed. 43, 1223 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Kiani, B. Heidari, M. Rassa, M. Kadkhodazadeh, B. Heidari, J. Basic Clin. Physiol. Pahrmacol. 25, 367 (2014)Google Scholar
  21. 21.
    L. Jin, Y. Zhang, L. Yan, Y. Guo, L. Niu, Molecules 17, 9361 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    G. Miliauskas, P. Venskutonis, T. Van Beek, Food Chem. 85, 231 (2004)CrossRefGoogle Scholar
  23. 23.
    T. Mosmann, J. Immunol. Methods 65, 55 (1983)CrossRefPubMedGoogle Scholar
  24. 24.
    A. Perna, A. De Luca, L. Adelfi, T. Pasquale, B. Varriale, T. Esposito, BMC Complement Altern. Med. 18, 63 (2018)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations