Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6311–6326 | Cite as

Photoluminescence and enhanced visible light driven photocatalysis studies of MoO3·CuO·ZnO nanocomposite

  • Md. Abdus Subhan
  • Pallab Chandra Saha
  • Prosenjit Sarker
  • Mohammad Al-Mamun
Article
  • 100 Downloads

Abstract

A trimetallic, MoO3·CuO·ZnO nanocomposite was synthesized by co-precipitation method. The nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), atomic forcce microscopy (AFM) and photoluminescence (PL). Particle size was determined to be 40.34 nm by using Scherrer’s formula from XRD data. The SEM–EDS mapping shows that all the elements in this composite are not confined in a single site, rather they are distributed in a solid matrix. PL study of the MoO3·CuO·ZnO nanocomposite showed spectral variation through size and morphology with calcination temperature. Photocatalytic activity of the composite was studied under visible light irradiation. The composite showed excellent visible light dye degradation efficiency of 95.82% at pH 9.

Keywords

Nanocomposite Photoluminescence Photocatalyst AFM surface EDS mapping 

Notes

Acknowledgements

TWAS research Grant 2015 (No. 15-164 RG/CHE/AS_I – FR3240287058) is gratefully acknowledged for funding. Md. A. Subhan acknowledged TWAS for travel grant. MOE (Ministry of Education, Bangladesh) Grant 2015–2016 (PS14290) and SUST research grant PS/2017/01 is also acknowledged for another funding.

Supplementary material

11164_2018_3491_MOESM1_ESM.doc (747 kb)
Supplementary material 1 (DOC 747 kb)

References

  1. 1.
    T. Moeller, Coordination Chemistry of the Lanthanide Elements—One Hundred Years of Development and Understanding (1967)CrossRefGoogle Scholar
  2. 2.
    D. Zhang, N. Yin, B. Xia, J. Mater. Sci. Mater. Electron. 26, 5937 (2015)CrossRefGoogle Scholar
  3. 3.
    M.A. Subhan, P.C. Saha, M.M. Rahman, M.A.R. Akand, A.M. Asiri, M. Al-Mamun, New J. Chem. 41(15), 7220 (2017)CrossRefGoogle Scholar
  4. 4.
    T. Yan, T. Wu, Y. Zhang, M. Sun, X. Wang, Q. Wei, B. Du, J. Colloid Interface Sci. 506, 197 (2017)CrossRefPubMedGoogle Scholar
  5. 5.
    X. Ren, R. Ge, Y. Zhang, D. Liu, D. Wu, X. Sun, B. Du, Q. Wei, J. Mater. Chem. A 5(16), 7291 (2017)CrossRefGoogle Scholar
  6. 6.
    J.A. Rodriguez, X. Wang, G. Liu, J.C. Hanson, J. Hrbek, C.H. Peden, A. Iglesias-Juez, M. Fernández-García, J. Mol. Catal. A Chem. 228(1–2), 11 (2005)CrossRefGoogle Scholar
  7. 7.
    R. Saleh, N.F. Djaja, S.P. Prakoso, J. Alloy. Compd. 546, 48 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Zhang, C. Jiang, Y.E. Sun, J. Alloy. Compd. 698, 476 (2017)CrossRefGoogle Scholar
  9. 9.
    M.A. Subhan, P.C. Saha, M.M. Rahman, J. Ahmed, A.M. Asiri, M. Al-Mamun, New J. Chem. 42(2), 872 (2018)CrossRefGoogle Scholar
  10. 10.
    M.B. Gawande, R.K. Pandey, R.V. Jayaram, Catal. Sci. Technol. 2(6), 1113 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Zhang, J. Liu, C. Jiang, A. Liu, B. Xia, Sens. Actuators B Chem. 240, 55 (2017)CrossRefGoogle Scholar
  12. 12.
    T. Yan, M. Li, X. Wang, M. Sun, H. Liu, Q. Wei, X. Wenguo, B. Du, Appl. Surf. Sci. 340, 102 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, Z. Liu, A.M. Asiri, Q. Wei, X. Sun, Adv. Mater. 2018, 1705366 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Ren, X. Ji, Y. Wei, D. Wu, Y. Zhang, M. Ma, Z. Liu, A.M. Asiri, Q. Wei, X. Sun, Chem. Commun. 54, 1425 (2018)CrossRefGoogle Scholar
  15. 15.
    G.H. Lee, J.G. Park, Y.M. Sung, K.Y. Chung, W.I. Cho, D.W. Kim, Nanotechnology 20(29), 295205 (2009)CrossRefPubMedGoogle Scholar
  16. 16.
    M. Asamoto, S. Miyake, K. Sugihara, H. Yahiro, Electrochem. Commun. 11(7), 1508 (2009)CrossRefGoogle Scholar
  17. 17.
    B. Sun, H. Sirringhaus, Nano Lett. 5(12), 2408 (2005)CrossRefPubMedGoogle Scholar
  18. 18.
    L. Xiao, S.-Y. Wu, Y.-R. Li, Renew. Energy 41, 1 (2012)CrossRefGoogle Scholar
  19. 19.
    J.L.G. Fierro, Metal oxides: chemistry and applications (CRC Press, Hoboken, 2005)CrossRefGoogle Scholar
  20. 20.
    F.H. Hussein, T.A. Abass, Int. J. Chem. Sci. 8(3), 1353 (2010)Google Scholar
  21. 21.
    Q.L. Yu, H.J.H. Brouwers, Appl. Catal. B 92(3–4), 454 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Sharma, P.S. Kumar, Nanosci. Nanotechnol. 2(3), 82 (2012)CrossRefGoogle Scholar
  23. 23.
    M.A. Subhan, A.M.M. Fahim, P.C. Saha, M.M. Rahman, K. Begum, A.K. Azad, Nano-Struct. Nano-Objects 10, 30 (2017)CrossRefGoogle Scholar
  24. 24.
    L. Irimpan, B. Krishnan, A. Deepthy, V.P.N. Nampoori, P. Radhakrishnan, J. Phys. D Appl. Phys. 40(18), 5670 (2007)CrossRefGoogle Scholar
  25. 25.
    K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy, Mater. Lett. 99, 97 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Mater. Sci. Eng., C 33(1), 91 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Naskar, S.A. Pillay, M. Chanda, J. Photochem. Photobiol., A 113(3), 257 (1998)CrossRefGoogle Scholar
  28. 28.
    N. Morales-Flores, U. Pal, E. Sánchez Mora, Appl. Catal. A 394(1–2), 269 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Md. Abdus Subhan
    • 1
  • Pallab Chandra Saha
    • 1
  • Prosenjit Sarker
    • 2
  • Mohammad Al-Mamun
    • 3
  1. 1.Department of ChemistryShah Jalal University of Science and TechnologySylhetBangladesh
  2. 2.Square Pharmaceuticals Bangladesh Ltd.DhakaBangladesh
  3. 3.Centre for Clean Environment and Energy, Griffith School of EnvironmentGriffith UniversityGold CoastAustralia

Personalised recommendations