Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6239–6251 | Cite as

Effects of deposition of different contents of Ag nanoparticles on thickness and structural, morphological, compositional, optical, and photocatalytic properties of 1D TiO2 nanoarrays

  • Feng Xue
  • Yanyan Ge
  • Changyong Zheng
Article
  • 26 Downloads

Abstract

One-dimensional (1D) TiO2 nanoarrays (NAs) were synthesized by a hydrothermal process, and Ag nanoparticles (NPs) were deposited on the arrays using a photodeposition technique. The content of Ag NPs was changed by altering the photodeposition time to 0, 5, 10, 15, and 20 min. The influence of the content of Ag NPs on the structural, morphological, compositional, optical, and photocatalytic properties of 1D TiO2 NAs was systematically investigated. The results demonstrated that 1D TiO2 NAs showed improved visible light absorption and enhanced photocatalytic properties after deposition of Ag NPs. Compared with bare TiO2 NAs, the TiO2 NAs after deposition of Ag NPs for 15 min showed the best optical and photoelectrochemical properties, and photodegradation efficiency (98.8 %).

Keywords

1D TiO2 nanoarrays Ag nanoparticles Optical properties Photocatalytic properties SPR effect 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (1808085MF206) and Natural Science Foundation of Education Office Anhui Province (KJ2017A522, KJ2018A0510). The authors thank Xi’an Polymer Light Technology Cory. for relevant experimental materials and support.

References

  1. 1.
    Q. Chen, M. Zhou, Z.M. Zhang, T. Tang, T. Wang, J. Mater. Sci. Mater. Electron. 28, 11800 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Song, C.X. Li, Z.R. Lou, Z.Z. Ye, L.P. Zhu, ACS Sustain. Chem. Eng. 5, 8982 (2017)CrossRefGoogle Scholar
  3. 3.
    K. Fujiwara, Y. Kuwahara, Y. Sumida, H. Yamashita, Langmuir 33, 6314 (2017)CrossRefPubMedGoogle Scholar
  4. 4.
    Z.Y. Liu, V. Subramania, M. Misra, J. Phys. Chem. C 113, 14028 (2015)CrossRefGoogle Scholar
  5. 5.
    Z.Y. Liu, M. Misra, ACS Nano 4, 2196 (2010)CrossRefPubMedGoogle Scholar
  6. 6.
    J.C. Lee, T.G. Kim, W. Lee, S.H. Han, Y.M. Sung, Cryst. Growth Des. 9, 4519 (2012)CrossRefGoogle Scholar
  7. 7.
    Q. Hu, C.C. Wu, L.Q. Cao, B. Chi, J. Pu, L. Jian, J. Power Sources 226, 8 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Nanoscale 4, 1707 (2012)CrossRefPubMedGoogle Scholar
  9. 9.
    B. Chen, K. Lu, Langmuir 28, 2937 (2012)CrossRefPubMedGoogle Scholar
  10. 10.
    Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, J. Am. Chem. Soc. 130, 14755 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, Small 4, 2286 (2008)CrossRefPubMedGoogle Scholar
  12. 12.
    M. Choi, J. Lim, M. Baek, W. Choi, W. Kim, K.J. Yong, ACS Appl. Mater. Interfaces 9, 16252 (2017)CrossRefPubMedGoogle Scholar
  13. 13.
    J.Q. Jiao, Y.C. Wei, Z. Zhao, J. Liu, J.M. Li, A.J. Duan, G.Y. Jiang, Ind. Eng. Chem. Res. 53, 17345 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces 7, 482 (2015)CrossRefPubMedGoogle Scholar
  15. 15.
    S. Anandan, M. Miyauchi, Phys. Chem. Chem. Phys. 13, 14937 (2011)CrossRefPubMedGoogle Scholar
  16. 16.
    Y.H. Xu, H.R. Chen, Z.X. Zeng, B. Lei, Appl. Surf. Sci. 252, 8565 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Angew. Chem. 129, 1 (2017)CrossRefGoogle Scholar
  18. 18.
    N.X. Li, M. Liu, B. Yang, W.X. Shu, Q.H. Shen, J.C. Zhou, J. Phys. Chem. C 121, 2923 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, M. Choi, M. Baek, Z.X. Deng, K.J. Yong, A.C.S. Appl. Mater. Interfaces 9, 3967 (2017)CrossRefPubMedGoogle Scholar
  20. 20.
    Q. Yang, Q. Xu, S.H. Yu, H.L. Jiang, Angew. Chem. 55, 3685 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D.G. Evans, X. Duan, J. Am. Chem. Soc. 138, 6298 (2016)CrossRefPubMedGoogle Scholar
  22. 22.
    G.M. Guo, B.B. Yu, P. Yu, X. Chen, Talanta 79, 570 (2009)CrossRefPubMedGoogle Scholar
  23. 23.
    W. Zhao, L.L. Feng, R. Yang, J. Zheng, X.G. Li, Appl. Catal. B Environ. 103, 181 (2011)CrossRefGoogle Scholar
  24. 24.
    J.B. Sambur, S.C. Riha, D. Choi, B.A. Parkinson, Langmuir 26, 4839 (2010)CrossRefPubMedGoogle Scholar
  25. 25.
    O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J.B. Gao, A.J. Nozik, M.C. Beard, Science 334, 1530 (2011)CrossRefPubMedGoogle Scholar
  26. 26.
    P.K. Santra, P.V. Kamat, J. Am. Chem. Soc. 134, 2508 (2012)CrossRefPubMedGoogle Scholar
  27. 27.
    L. Etgar, T. Moehl, S. Gabriel, S.G. Hickey, A. Eychmüller, M. Grätzel, ACS Nano 6, 3092 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    A.U. Pawar, C.W. Kim, M.J. Kang, Y.S. Kang, Nano Energy 20, 156 (2016)CrossRefGoogle Scholar
  29. 29.
    C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, Adv. Energy Mater. 6, 1501754 (2016)CrossRefGoogle Scholar
  30. 30.
    M.G. Kibria, F.A. Chowdhury, S. Zhao, B. Alotaibi, M.L. Trudeau, H. Guo, Z. Mi, Nat. Commun. 6, 6797 (2015)CrossRefPubMedGoogle Scholar
  31. 31.
    J.J. Tao, M. Zhang, J.G. Lv, S.S. Shi, Z.Z. Gong, G. Yao, Y.L. Cheng, G. He, X.S. Chen, Z.Q. Sun, Sci. Adv. Mater. 8, 941 (2016)CrossRefGoogle Scholar
  32. 32.
    Z.Q. Cheng, S.Z. Zhao, Z.L. Han, Y.Y. Zhang, X.D. Zhao, L.J. Kang, CrystEngComm 18, 8756 (2016)CrossRefGoogle Scholar
  33. 33.
    J.J. Tao, Z.Z. Gong, G. Yao, Y.L. Cheng, M. Zhang, J.G. Lv, S.W. Shi, G. He, X.S. Jiang, X.S. Chen, Z.Q. Sun, J. Alloys Compd. 688, 605 (2016)CrossRefGoogle Scholar
  34. 34.
    C.J. Howard, T.M. Sabine, F. Dickson, Acta Crystallogr. Sect. B: Struct. Sci. 47, 462 (1991)CrossRefGoogle Scholar
  35. 35.
    M.A. Lefdil, R. Diaz, H. Bihri, M.A. Aouaj, F. Rueda, Eur. Phys. J. Appl. Phys. 38, 217 (2007)CrossRefGoogle Scholar
  36. 36.
    F.B. Li, X.Z. Li, M.F. Hou, Appl. Catal. B Environ. 48, 185 (2004)CrossRefGoogle Scholar
  37. 37.
    X. Quan, Q. Zhao, H. Tan, X. Sang, F. Wang, Y. Dai, Mater. Chem. Phys. 114, 90 (2009)CrossRefGoogle Scholar
  38. 38.
    J.C. Yu, J.G. Yu, H.Y. Tang, L.Z. Zhang, J. Mater. Chem. 12, 81 (2002)CrossRefGoogle Scholar
  39. 39.
    Q. Tian, J. Li, Q. Xie, Q. Wang, Mater. Chem. Phys. 132, 652 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Roguska, M. Pisarek, M. Andrzejczuk, M. Lewandowska, Thin Solid Films 553, 173 (2014)CrossRefGoogle Scholar
  41. 41.
    H.X. Shi, J.Y. Chen, G.Y. Li, X. Nie, H.J. Zhao, P.K. Wong, T.C. An, Appl. Mater. Interfaces 5, 6959 (2013)CrossRefGoogle Scholar
  42. 42.
    L. Li, X.L. Zhang, W.Z. Zhang, L.L. Wang, X. Chen, Y. Gao, Colloid. Surf. A 457, 134 (2014)CrossRefGoogle Scholar
  43. 43.
    W.J. Zhou, H. Liu, J.Y. Wang, D. Liu, G.J. Du, J.J. Cui, A.C.S. Appl. Mater. Interfaces 2, 2385 (2010)CrossRefPubMedGoogle Scholar
  44. 44.
    J.J. Tao, Z.Z. Gong, G. Yao, Y.L. Cheng, M. Zhang, J.G. Lv, S.W. Shi, G. He, X.S. Jiang, X.S. Chen, Z.Q. Sun, J. Alloys Compd. 689, 451 (2016)CrossRefGoogle Scholar
  45. 45.
    Y.C. Yang, J.W. Wen, J.H. Wei, R. Xiong, J. Shi, C.X. Pan, A.C.S. Appl. Mater. Interfaces 5, 6201 (2013)CrossRefPubMedGoogle Scholar
  46. 46.
    L. Yang, D.L. Chu, Y. Chen, W.H. Wang, Q.H. Zhang, J.H. Yang, M. Zhang, Y.L. Cheng, K.R. Zhu, J.G. Lv, G. He, Z.Q. Sun, J. Electrochem. Soc. 163, H180 (2016)CrossRefGoogle Scholar
  47. 47.
    Y.C. Huang, S.Y. Chang, J.M. Jehng, J. Phys. Chem. C 121, 19063 (2017)CrossRefGoogle Scholar
  48. 48.
    K.K. Paul, P.K. Giri, J. Phys. Chem. C 121, 20016 (2017)CrossRefGoogle Scholar
  49. 49.
    X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Catal. Today 225, 64 (2014)CrossRefGoogle Scholar
  50. 50.
    K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochem. Commun. 2, 207 (2000)CrossRefGoogle Scholar
  51. 51.
    X. Lv, F.Q. Gao, Y. Yang, T.H. Wang, Ind. Eng. Chem. Res. 55, 107 (2016)CrossRefGoogle Scholar
  52. 52.
    G.G. Liu, K. Han, Y.H. Zhou, H.Q. Ye, X. Zhang, J.B. Hu, X.J. Li, ACS Sustain. Chem. Eng. 6, 6256 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic and Electrical EngineeringAnhui Sanlian UniversityHefeiPeople’s Republic of China
  2. 2.School of Science and TechnologyZhejiang Gongshang University Hangzhou College of CommerceTongluPeople’s Republic of China
  3. 3.School of Electronic and Information EngineeringAnhui Jianzhu UniversityHefeiPeople’s Republic of China

Personalised recommendations