Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6053–6070 | Cite as

Binary copper and iron oxides immobilized on silica-layered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water

  • Masumeh Gilanizadeh
  • Behzad Zeynizadeh
Article

Abstract

In this study, a novel heterogeneous and reusable nanostructure catalyst was synthesized through the immobilization of bimetallic Cu–Fe mixed oxides on silica-layered magnetite. The prepared nanomagnetic Fe3O4@SiO2@CuO–Fe2O3 was characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction, Brunauer–Emmett–Teller analysis, thermogravimetric analysis, differential thermal gravity, a vibration sample magnetometer, transmission electron microscopy and inductively coupled plasma optical emission spectroscopy. The catalytic activity of this mesoporous nanocomposite was studied in the Knoevenagel condensation of aromatic aldehydes and malononitrile in water to afford benzylidenemalononitriles in high to excellent yields. The nanocatalyst was able to be recycled five times without a significant loss in catalytic activity. This nanostructure catalyst allows for mild reaction conditions and acceptable reaction times, while delivering the desired products in high purity and yield without the use of dangerous organic solvents.

Graphical abstract

Keywords

Benzylidenemalononitriles Fe3O4@SiO2@CuO–Fe2O3 Knoevenagel condensation Malononitrile Nanocatalyst 

Notes

Acknowledgements

The authors gratefully acknowledged the financial support of this work by the research council of Urmia University.

Supplementary material

11164_2018_3475_MOESM1_ESM.doc (16.2 mb)
Supplementary material 1 (DOC 16570 kb)

References

  1. 1.
    B. Aday, Y. Yildiz, R. Ulus, S. Eris, F. Sen, M. Kaya, New J. Chem. 40, 748 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Goksu, Y. Yildiz, B. Celik, M. Yazici, B. Kilbas, F. Sen, Catal. Sci. Technol. 6, 2318 (2016)CrossRefGoogle Scholar
  3. 3.
    F. Sen, G. Gokagac, S. Sen, J. Nanopart. Res. 15, 1979 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Aday, H. Pamuk, M. Kaya, F. Sen, J. Nanosci. Nanotechnol. 16, 6498 (2016)CrossRefPubMedGoogle Scholar
  5. 5.
    Y. Yildiz, E. Erken, H. Pamuk, H. Sert, F. Sen, J. Nanosci. Nanotechnol. 16, 5951 (2016)CrossRefPubMedGoogle Scholar
  6. 6.
    O. Karatepe, Y. Yildiz, H. Pamuk, S. Eris, Z. Dasdelen, F. Sen, RSC Adv. 6, 50851 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Yildiz, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Sen, Int. J. Hydrogen Energy 42, 13061 (2017)CrossRefGoogle Scholar
  8. 8.
    E. Erken, Y. Yildiz, B. Kilbas, F. Sen, J. Nanosci. Nanotechnol. 16, 5944 (2016)CrossRefPubMedGoogle Scholar
  9. 9.
    Y. Yildiz, T. Onal Okyay, B. Sen, B. Gezer, S. Kuzu, A. Savk, E. Demir, Z. Dasdelen, H. Sert, F. Sen, ChemistrySelect 2, 697 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Akocak, B. Sen, N. Lolak, A. Savk, M. Koca, S. Kuzu, F. Sen, Nano Struct. Nano Objects 11, 25 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Goksu, B. Celik, Y. Yildiz, F. Sen, B. Kilbas, ChemistrySelect 1, 2366 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Sen, S. Kuzu, E. Demir, T.O. Okyay, F. Sen, Int. J. Hydrogen Energy 42, 23299 (2017)CrossRefGoogle Scholar
  13. 13.
    Z. Dasdelen, Y. Yildiz, S. Eris, F. Sen, Appl. Catal. B Environ. 219, 511 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Sena, E. Hazal Akdere, A. Savk, E. Gultekin, O. Parali, H. Goksu, F. Sen, Appl. Catal. B Environ. 225, 148 (2018)CrossRefGoogle Scholar
  15. 15.
    I. Esirden, E. Erken, M. Kaya, F. Sen, Catal. Sci. Technol. 5, 4452 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Celik, Y. Yildiz, H. Sert, E. Erken, Y. Koskun, F. Sen, RSC Adv. 6, 24097 (2016)CrossRefGoogle Scholar
  17. 17.
    B. Celik, E. Erken, S. Eris, Y. Yildiz, B. Sahin, H. Pamuk, F. Sen, Catal. Sci. Technol. 6, 1685 (2016)CrossRefGoogle Scholar
  18. 18.
    E. Erken, I. Esirden, M. Kaya, F. Sen, RSC Adv. 5, 68558 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Yildiz, H. Pamuk, O. Karatepe, Z. Dasdelen, F. Sen, RSC Adv. 6, 32858 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Goksu, Y. Yildiz, B. Celik, M. Yazici, B. Kilbas, F. Sen, ChemistrySelect 1, 953 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Gilanizadeh, B. Zeynizadeh, New J. Chem. (2018).  https://doi.org/10.1039/C8NJ00788H CrossRefGoogle Scholar
  22. 22.
    S.U. Sonavane, M.B. Gawande, S.S. Deshpande, A. Venkataraman, R.V. Jayaram, Catal. Commun. 8, 1803 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Izumi, N. Natsume, H. Takamine, I. Tamaoki, K. Urabe, Bull. Chem. Soc. Jpn. 62, 2159 (1989)CrossRefGoogle Scholar
  24. 24.
    K. Tanabe, W.F. Holderich, Appl. Catal. A 181, 399 (1999)CrossRefGoogle Scholar
  25. 25.
    B.M. Reddy, A. Khan, Catal. Rev. Sci. Eng. 47, 257 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Ajaikumar, A. Pandurangan, Appl. Catal. A 357, 184 (2009)CrossRefGoogle Scholar
  27. 27.
    W.C. Sheets, E.S. Stampler, H. Kabbour, M.I. Bertoni, L. Cario, T.O. Mason, T.J. Marks, K.R. Poeppelmeier, Inorg. Chem. 46, 10741 (2007)CrossRefPubMedGoogle Scholar
  28. 28.
    A. Tang, H. Yang, X. Zhang, Int. J. Phys. Sci. 1, 102 (2006)Google Scholar
  29. 29.
    V.V. Zyryanov, Inorg. Mater. 39, 1163 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Cui, M. Zayat, D. Levy, J. Sol-Gel Sci. Technol. 35, 175 (2005)CrossRefGoogle Scholar
  31. 31.
    A. Elia, P.M. Aispuro, N. Quaranta, J.M. Martın-Martınez, P. Vazquez, Macromol. Symp. 301, 136 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.J. Kim, S.B. Rawal, S.D. Sung, W.I. Lee, Bull. Korean Chem. Soc. 32, 141 (2011)CrossRefGoogle Scholar
  33. 33.
    P.F. Fulvio, S. Pikus, M. Jaroniec, A.C.S. Appl. Mater. Interfaces 2, 134 (2010)CrossRefGoogle Scholar
  34. 34.
    D. Jiang, L. Su, L. Ma, N. Yao, X. Xu, H. Tang, X. Li, Appl. Surf. Sci. 256, 3216 (2010)CrossRefGoogle Scholar
  35. 35.
    B.M. Reddy, I. Ganesh, J. Mol. Catal. A Chem. 169, 207 (2001)CrossRefGoogle Scholar
  36. 36.
    B.M. Reddy, B. Chowdhury, P.G. Smirniotis, Appl. Catal. A 211, 19 (2001)CrossRefGoogle Scholar
  37. 37.
    G. Sankar, C.N.R. Rao, T. Rayment, J. Mater. Chem. 1, 299 (1991)CrossRefGoogle Scholar
  38. 38.
    A.S. Kulkarni, R.V. Jayaram, J. Mol. Catal. A Chem. 223, 107 (2004)CrossRefGoogle Scholar
  39. 39.
    Y.C. Chang, S.W. Chang, D.H. Chen, React. Funct. Polym. 66, 335 (2006)CrossRefGoogle Scholar
  40. 40.
    V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111, 3036 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, J. Am. Chem. Soc. 128, 5279 (2006)CrossRefPubMedGoogle Scholar
  42. 42.
    M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 7039 (2007)CrossRefGoogle Scholar
  43. 43.
    D.H. Zhang, G.D. Li, J.X. Li, J.S. Chen, Chem. Commun. 3414 (2008)Google Scholar
  44. 44.
    A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  45. 45.
    M.B. Gawande, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42, 3371 (2013)CrossRefPubMedGoogle Scholar
  46. 46.
    S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49, 3428 (2010)CrossRefGoogle Scholar
  47. 47.
    S.M. Baghbanian, M. Farhang, Synth. Commun. 44, 697 (2014)CrossRefGoogle Scholar
  48. 48.
    A.P. Amrute, A. Bordoloi, N. Lucas, K. Palraj, S.B. Halligudi, Catal. Lett. 126, 286 (2008)CrossRefGoogle Scholar
  49. 49.
    S.J. Singh, R.V. Jayaram, Tetrahedron Lett. 49, 4249 (2008)CrossRefGoogle Scholar
  50. 50.
    Q. Shi, R. Lu, L. Lu, X. Fu, D. Zhao, Adv. Synth. Catal. 349, 1877 (2007)CrossRefGoogle Scholar
  51. 51.
    M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Catal. Today 111, 236 (2006)CrossRefGoogle Scholar
  52. 52.
    N. Li, C. Descorme, M. Besson, Appl. Catal. B 76, 92 (2007)CrossRefGoogle Scholar
  53. 53.
    S.S. Deshpande, R.V. Jayaram, Catal. Commun. 9, 186 (2008)CrossRefGoogle Scholar
  54. 54.
    Q. Zhuang, J.M. Miller, Appl. Catal. A 209, L1 (2001)CrossRefGoogle Scholar
  55. 55.
    M. Crivello, C. Pe´rez, E. Herrero, G. Ghione, S. Casuscelli, E. Rodrıguez-Castellon, Catal. Today 107–108, 215 (2005)CrossRefGoogle Scholar
  56. 56.
    A.K. Singh, S.D. Fernando, Energy Fuels 23, 5160 (2009)CrossRefGoogle Scholar
  57. 57.
    G. Centi, S. Perathoner, Catal. Rev. Sci. Eng. 40, 175 (1998)CrossRefGoogle Scholar
  58. 58.
    M.A. Carreon, V.V. Guliants, Eur. J. Inorg. Chem. 2005, 27 (2005)CrossRefGoogle Scholar
  59. 59.
    L.F. Tietze, U. Beifuss, Comprehensive Organic Synthesis, vol. 2 (Pergamon Press, Oxford, 1991), p. 341CrossRefGoogle Scholar
  60. 60.
    F. Freeman, Chem. Rev. 69, 591 (1969)CrossRefPubMedGoogle Scholar
  61. 61.
    R.K.G. Panicker, S. Krishnapillai, Tetrahedron Lett. 55, 2352 (2014)CrossRefGoogle Scholar
  62. 62.
    M. Almasi, V. Zelenak, M. Opanasenko, J. Cejka, Dalton Trans. 43, 3730 (2014)CrossRefPubMedGoogle Scholar
  63. 63.
    F. Shirini, N. Daneshvar, RSC Adv. 6, 110190 (2016)CrossRefGoogle Scholar
  64. 64.
    S. Wang, Z. Ren, W. Cao, W. Tong, Synth. Commun. 31, 673 (2001)CrossRefGoogle Scholar
  65. 65.
    J. Zhang, T. Jiang, B. Han, A. Zhu, X. Ma, Synth. Commun. 36, 3305 (2006)CrossRefGoogle Scholar
  66. 66.
    G. Li, J. Xiao, W. Zhang, Green Chem. 14, 2234 (2012)CrossRefGoogle Scholar
  67. 67.
    P. Gupta, M. Kour, S. Paul, J.H. Clark, RSC Adv. 4, 7461 (2014)CrossRefGoogle Scholar
  68. 68.
    M.M. Heravi, K. Bakhtiari, S. Taheri, H.A. Oskooi, J. Chin. Chem. Soc. 54, 1557 (2007)CrossRefGoogle Scholar
  69. 69.
    M. Basude, P. Sunkara, V.S. Puppala, J. Chem. Pharm. Res. 5, 46 (2013)Google Scholar
  70. 70.
    M.A. Pasha, K. Manjula, V.P. Jayashankara, Indian J. Chem. 49, 1428 (2010)Google Scholar
  71. 71.
    R. Pal, Int. J. Adv. Chem. 2, 27 (2014)Google Scholar
  72. 72.
    R. Gupta, M. Gupta, S. Paul, R. Gupta, Bull. Korean Chem. Soc. 30, 2419 (2009)CrossRefGoogle Scholar
  73. 73.
    W.X. Zuo, R. Hua, X. Qiu, Synth. Commun. 34, 3219 (2004)CrossRefGoogle Scholar
  74. 74.
    D.Z. Xu, Y. Liu, S. Shi, Y. Wang, Green Chem. 12, 514 (2010)CrossRefGoogle Scholar
  75. 75.
    A. Rostami, B. Atashkar, H. Gholami, Catal. Commun. 37, 69 (2013)CrossRefGoogle Scholar
  76. 76.
    S.K. Panja, N. Dwivedi, S. Saha, RSC Adv. 5, 65526 (2015)CrossRefGoogle Scholar
  77. 77.
    R. Vaid, M. Gupta, Monatshefte Chem. 146, 645 (2015)CrossRefGoogle Scholar
  78. 78.
    S.L. Khillare, A.O. Dhokte, M.K. Lande, B.R. Arbad, Int. J. Chem. Pharm. Sci. 5, 96 (2014)Google Scholar
  79. 79.
    M. Gupta, R. Gupta, M. Anand, Beilstein J. Org. Chem. 5, 68 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    C. Zhuo, D. Xian, W. Jian-wei, X. Hui, ISRN Org. Chem. 676789 (2011)Google Scholar
  81. 81.
    G.Y. Li, Y.R. Jiang, K.L. Huang, P. Ding, L.L. Yao, Colloids Surf. A Physicochem. Eng. Asp. 320, 11 (2008)CrossRefGoogle Scholar
  82. 82.
    J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, M.E. Gómez, Rev. LatinAm. Metal. Mater. 30, 60 (2010)Google Scholar
  83. 83.
    A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7, 6003 (2012)CrossRefGoogle Scholar
  84. 84.
    J.J. Boruah, S.P. Das, S.R. Ankireddy, S.R. Gogoi, N.S. Islam, Green Chem. 15, 2944 (2013)CrossRefGoogle Scholar
  85. 85.
    X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater. 270, 1 (2004)CrossRefGoogle Scholar
  86. 86.
    Y. Zhang, G.M. Zeng, L. Tang, D.L. Huang, X.Y. Jiang, Y.N. Chen, Biosens. Bioelectron. 22, 2121 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryUrmia UniversityUrmiaIran

Personalised recommendations