Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6039–6051 | Cite as

Effect of solvated ionic liquids on the ion conducting property of composite membranes for lithium ion batteries

  • Jae-Yeong Park
  • Jun-Woo Park
  • Chil-Hoon Doh
  • Yoon-Cheol Ha
  • Sang-Min Lee
  • Seok Kim
Article
  • 123 Downloads

Abstract

We prepared the polyethylene oxide (PEO)-based composite membrane electrolytes which contained the specialized ionic liquids and the inorganic filler of Li7La3Zr2O12 (LLZO). Mixtures of ionic liquids and tetragonal inorganic fillers were used as additives to prepare composite electrolytes for an application of all solid-state lithium ion batteries (ASLBs). In order to improve the ionic conductivity of composite membranes, we studied the structural change and the electrochemical behaviors as a function of the amounts of solvated ionic liquids (ILs). The addition effect of solvated ILs showed the higher ionic conductivity such as 10−4 S/cm at 55 °C by reducing the crystalline character of polymer based composite, resulting in the enhanced ion conducting property. The hybrid composite membranes were successfully made in flexible form, and have an excellent thermal and electrochemical stability. Finally, the electrochemical performance of the half-cell was evaluated, and it was confirmed that the ion-conducting characteristics were influenced and controlled by the effect of ILs.

Keywords

Ionic liquid Composite membrane Solid state Lithium battery Conducting property 

Notes

Acknowledgements

This research was supported by Korea Electrotechnology Research Institute (KERI) Primary research program through the National Research Council of Science and Technology (NST) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 17-12-N0101-35).

References

  1. 1.
    Y. Inaguma, L.Q. Chen, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, Solid State Commun. 86, 689 (1993)CrossRefGoogle Scholar
  2. 2.
    J. Fu, J. Am. Ceram. Soc. 80, 1901 (1997)CrossRefGoogle Scholar
  3. 3.
    R. Kanno, M. Maruyama, J. Electrochem. Soc. 148, A742 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Hayashi, S. Hama, T. Minami, M. Tatsumisago, Electrochem. Commun. 5, 111 (2003)CrossRefGoogle Scholar
  5. 5.
    B. Scrosati, F. Croce, L. Persi, J. Electrochem. Soc. 147, 1718 (2000)CrossRefGoogle Scholar
  6. 6.
    L. Persi, F. Croce, B. Scrosati, E. Plichta, M.A. Hendrickson, J. Electrochem. Soc. 149, A212 (2002)CrossRefGoogle Scholar
  7. 7.
    G.B. Appetecchi, F. Croce, G. Dautzenberg, M. Mastragostino, F. Ronci, B. Scrosati, F. Soavi, A. Zaneli, F. Alessandrini, P.P. Prosini, J. Electrochem. Soc. 145, 4126 (1998)CrossRefGoogle Scholar
  8. 8.
    G.B. Appetecchi, S. Passerini, Electrochim. Acta 45, 2139 (2000)CrossRefGoogle Scholar
  9. 9.
    S.J. Lee, S.J. Park, S. Kim, J. Nanosci. Nanotechnol. 17(8), 5768 (2017)CrossRefGoogle Scholar
  10. 10.
    J.H. Choi, C.H. Lee, J.H. Yu, C.H. Doh, S.M. Lee, J. Electrochem. Soc. 274, 458 (2015)Google Scholar
  11. 11.
    V. Thangadurai, W. Weppner, J. Solid State Chem. 179, 974 (2006)CrossRefGoogle Scholar
  12. 12.
    R. Murugan, V. Thangadurai, W. Weppner, Ionics 13, 195 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Kaeriyama, H. Munakata, K. Kajihara, K. Kanamura, Y. Sato, T. Yoshida, ECS Trans. 16, 175 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato, T. Yoshida, J. Electrochem. Soc. 157, A1076 (2010)CrossRefGoogle Scholar
  15. 15.
    V. Thangadurai, H. Kaack, W. Weppner, J. Am. Ceram. Soc. 86, 437 (2003)CrossRefGoogle Scholar
  16. 16.
    V. Thangadurai, W. Weppner, Adv. Funct. Mater. 15, 107 (2005)CrossRefGoogle Scholar
  17. 17.
    V. Thangadurai, W. Weppner, J. Am. Ceram. Soc. 88, 411 (2005)CrossRefGoogle Scholar
  18. 18.
    S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta 49, 1057 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T.Y. Kim, S.W. Baek, J.M. Lee, S. Doo, N. Machida, J. Electrochem. Soc. 248, 943 (2014)Google Scholar
  20. 20.
    S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta 51, 1636 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Ceram. Soc. 133, 13121 (2011)Google Scholar
  22. 22.
    T. Tamura, K. Yoshida, T. Hachida, M. Tsuchiya, M. Nakamura, Y. Kazue, N. Tachikawa, K. Dokko, M. Watanabe, Chem. Lett. Soc. 39, 753 (2010)CrossRefGoogle Scholar
  23. 23.
    K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 115, 18384 (2011)CrossRefGoogle Scholar
  24. 24.
    K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Electrochem. Soc. 159, A1005 (2012)CrossRefGoogle Scholar
  25. 25.
    T. Welton, Chem. Rev. 99, 2071 (1999)CrossRefPubMedGoogle Scholar
  26. 26.
    P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39, 3772 (2000)CrossRefGoogle Scholar
  27. 27.
    B.R. Choi, S.J. Park, S. Kim, J. Nanosci. Nanotechnol. 16(9), 9149 (2016)CrossRefGoogle Scholar
  28. 28.
    B.R. Choi, S.J. Park, S. Kim, J. Nanosci. Nanotechnol. 16(3), 2765 (2016)CrossRefPubMedGoogle Scholar
  29. 29.
    K.M. Kim, S.J. Park, J.S. Im, C.W. Lee, Y. Jung, S. Kim, Carbon Lett. 17(1), 70 (2016)CrossRefGoogle Scholar
  30. 30.
    B.R. Choi, S.J. Park, S. Kim, J. Ind. Eng. Chem. 31, 352 (2015)CrossRefGoogle Scholar
  31. 31.
    M.G. Kim, I.J. Kim, Y. Jung, S. Kim, Res. Chem. Int. 41, 4749 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Battery Research CenterKorea Electrotechnology Research InstituteChangwonRepublic of Korea
  2. 2.Department of Chemical and Biomolecular EngineeringPusan National UniversityGeumjung, BusanRepublic of Korea

Personalised recommendations