Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system
- 154 Downloads
Abstract
This study investigated nitrate removal using biological denitrification by the iron-reducing bacteria strain CC76 combined with zero-valent iron (ZVI) in simulated groundwater under anaerobic conditions. The mechanism of nitrate reduction as well as the process of iron cycling by strain CC76 and ZVI were studied. During growth experiments, the strain CC76 showed the ability to utilize Fe2+ (electron donor) produced from the stimulated corrosion of ZVI for the nitrate removal. ZVI exerted inhibitive effects on the growth of strain CC76 in the early stage. However, the strain CC76 was able to tolerate the presence of ZVI in the long term. Moreover, three factors (temperature, initial pH, and ZVI concentration) were selected as effective factors and were optimized using a central composite design of response surface methodology. Based on the statistical analysis, a temperature of 30.44 °C, initial pH of 6.11, and ZVI concentration of 5.89 g/L were determined to be the optimum values. The effect of Fe2+/ZVI ratio was also explored and compared with ZVI alone, a certain amount of a mixture of Fe2+ and ZVI showed a higher nitrate removal ability. Moreover, scanning electron microscopy and X-ray diffraction analyses showed the corrosion of ZVI occurred after reaction in the autotrophic denitrification system.
Keywords
Nitrate removal Iron-reducing bacteria Zero-valent iron (ZVI) Iron cycle Response surface methodology (RSM)Notes
Acknowledgements
This research work was partly supported by the National Natural Science Foundation of China (NSFC) (Nos. 51678471, 51778523).
References
- 1.P. Mikuška, Z. Večeřa, Anal. Chim. Acta 495(1), 225 (2003)CrossRefGoogle Scholar
- 2.A. Rezaee, H. Godini, S. Dehestani, A. Khavanin, Iran. J. Environ. Health Eng. 5(2), 125 (2008)Google Scholar
- 3.A. Kapoor, T. Viraraghavan, J. Environ. Eng. 123(123), 371 (1997)CrossRefGoogle Scholar
- 4.D.J. Wan, H.J. Liu, J.H. Qu, P.J. Lei, S.H. Xiao, Y.N. Hou, Bioresour. Technol. 100, 142 (2009)CrossRefPubMedGoogle Scholar
- 5.Y.X. Zhao, B.G. Zhang, C.P. Feng, F.Y. Huang, P. Zhang, Z.Y. Zhang, Y.N. Yang, N. Sugiura, Bioresour. Technol. 107, 159 (2012)CrossRefPubMedGoogle Scholar
- 6.K.L. Straub, W.A. Schönhuber, B.E. Buchholz-Cleven, B. Schink, Geomicrobiol. J. 21, 371 (2004)CrossRefGoogle Scholar
- 7.S.K. Chaudhuri, J.G. Lack, J.D. Coates, Appl. Environ. Microbiol. 67, 2844 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
- 8.E.M. Muehe, S. Gerhardt, B. Schink, A. Kappler, FEMS Microbiol. Ecol. 70(3), 335 (2009)CrossRefPubMedGoogle Scholar
- 9.Y.K. Sun, J.X. Li, T.L. Huang, X.H. Guan, Water Res. 100, 277 (2016)CrossRefPubMedGoogle Scholar
- 10.S.F. Cheng, S.C. Wu, Chemosphere 41(8), 1263 (2000)CrossRefPubMedGoogle Scholar
- 11.H.L. Lien, W.X. Zhang, Colloids Surf. A Physicochem. Eng. Asp. 191(1), 97 (2001)CrossRefGoogle Scholar
- 12.Y.H. Huang, T.C. Zhang, Water Res. 38(11), 2631 (2004)CrossRefPubMedGoogle Scholar
- 13.G.C. Yang, H.L. Lee, Water Res. 39(5), 884 (2005)CrossRefPubMedGoogle Scholar
- 14.J.F. Su, C. Cheng, T.L. Huang, F. Ma, J.S. Lu, S.C. Shao, J. Taiwan Inst. Chem. Eng. 66, 106 (2016)CrossRefGoogle Scholar
- 15.J.F. Su, S.C. Zheng, T.L. Huang, F. Ma, S.C. Shao, S.F. Yang, L.N. Zhang, Bioresour. Technol. 192, 654 (2015)CrossRefPubMedGoogle Scholar
- 16.X. Ren, L. He, J. Cheng, J. Chang, PLoS ONE 9(2), 87578 (2014)CrossRefGoogle Scholar
- 17.C.L. Wan, S. Ding, C. Zhang, X.J. Tan, W.G. Zou, X. Liu, X. Yang, Sep. Purif. Technol. 180, 1 (2017)CrossRefGoogle Scholar
- 18.S. Vani, P. Binod, M. Kuttiraja, R. Sindhu, S.V. Sandhya, Bioresour. Technol. 112(5), 300 (2012)CrossRefPubMedGoogle Scholar
- 19.T.L. Kirschling, K.B. Gregory, J. Minkley, G. Edwin, G.V. Lowry, R.D. Tilton, Environ. Sci. Technol. 44, 3474 (2010)CrossRefPubMedGoogle Scholar
- 20.Z.M. Xiu, K.B. Gregory, G.V. Lowry, P.J. Alvarez, Environ. Sci. Technol. 44(19), 7647 (2010)CrossRefPubMedGoogle Scholar
- 21.M. Auffan, W. Achouak, J. Rose, M. Roncato, C. Chanéac, D.T. Waite, A. Masion, J.C. Woicik, M.R. Wiesner, J. Bottero, Environ. Sci. Technol. 42, 6730 (2008)CrossRefPubMedGoogle Scholar
- 22.Y. An, Q. Dong, K. Zhang, Chemosphere 103(5), 86 (2014)CrossRefPubMedGoogle Scholar
- 23.C.P. Huang, H.W. Wang, P.C. Chiu, Water Res. 32, 2257 (1998)CrossRefGoogle Scholar
- 24.H.R. Dong, F. Zhao, Q. He, Y.K. Xie, Y.L. Zeng, L.H. Zhang, L. Tang, G.M. Zeng, Sep. Purif. Technol. 175, 376 (2017)CrossRefGoogle Scholar
- 25.S.M.J. Mirazimi, F. Rashchi, M. Saba, Sep. Purif. Technol. 116, 175 (2013)CrossRefGoogle Scholar
- 26.R.M. Gholami, S.M. Mousavi, S.M. Borghei, J. Ind. Eng. Chem. 18, 218 (2011)CrossRefGoogle Scholar
- 27.L. Zhang, Y. Liu, G.M. Ai, L.L. Miao, H.Y. Zheng, Z.P. Liu, Bioresour. Technol. 108, 35 (2012)CrossRefPubMedGoogle Scholar
- 28.S. Bae, K. Hanna, Environ. Sci. Technol. 49(17), 10536 (2015)CrossRefPubMedGoogle Scholar
- 29.C. Ruangchainikom, C.H. Liao, J. Anotai, M.T. Lee, Water Res. 40, 195 (2006)CrossRefPubMedGoogle Scholar
- 30.L. Smith, S.P. Buckwalter, D.A. Repert, D.N. Miller, Water Res. 39, 2014 (2005)CrossRefPubMedGoogle Scholar
- 31.J.L. Campos, S. Carvalho, R. Portela, A. Mosquera-Corral, R. Méndez, Bioresour. Technol. 99, 1293 (2008)CrossRefPubMedGoogle Scholar
- 32.J. Zhang, Z. Hao, Z. Zhang, Y. Yang, X. Xu, Process. Saf. Environ. 88(6), 439 (2010)CrossRefGoogle Scholar
- 33.Y.K. Xie, H.R. Dong, G.M. Zeng, L. Tang, Z. Jiang, C. Zhang, J.M. Deng, L.H. Zhang, Y. Zhang, J. Hazard. Mater. 321, 390 (2017)CrossRefPubMedGoogle Scholar
- 34.J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Environ. Sci. Technol. 39, 1221 (2005)CrossRefPubMedGoogle Scholar