Research on Chemical Intermediates

, Volume 44, Issue 10, pp 6011–6022 | Cite as

Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system

  • Jin suo Lu
  • Ting ting Lian
  • Jun feng SuEmail author


This study investigated nitrate removal using biological denitrification by the iron-reducing bacteria strain CC76 combined with zero-valent iron (ZVI) in simulated groundwater under anaerobic conditions. The mechanism of nitrate reduction as well as the process of iron cycling by strain CC76 and ZVI were studied. During growth experiments, the strain CC76 showed the ability to utilize Fe2+ (electron donor) produced from the stimulated corrosion of ZVI for the nitrate removal. ZVI exerted inhibitive effects on the growth of strain CC76 in the early stage. However, the strain CC76 was able to tolerate the presence of ZVI in the long term. Moreover, three factors (temperature, initial pH, and ZVI concentration) were selected as effective factors and were optimized using a central composite design of response surface methodology. Based on the statistical analysis, a temperature of 30.44 °C, initial pH of 6.11, and ZVI concentration of 5.89 g/L were determined to be the optimum values. The effect of Fe2+/ZVI ratio was also explored and compared with ZVI alone, a certain amount of a mixture of Fe2+ and ZVI showed a higher nitrate removal ability. Moreover, scanning electron microscopy and X-ray diffraction analyses showed the corrosion of ZVI occurred after reaction in the autotrophic denitrification system.


Nitrate removal Iron-reducing bacteria Zero-valent iron (ZVI) Iron cycle Response surface methodology (RSM) 



This research work was partly supported by the National Natural Science Foundation of China (NSFC) (Nos. 51678471, 51778523).


  1. 1.
    P. Mikuška, Z. Večeřa, Anal. Chim. Acta 495(1), 225 (2003)CrossRefGoogle Scholar
  2. 2.
    A. Rezaee, H. Godini, S. Dehestani, A. Khavanin, Iran. J. Environ. Health Eng. 5(2), 125 (2008)Google Scholar
  3. 3.
    A. Kapoor, T. Viraraghavan, J. Environ. Eng. 123(123), 371 (1997)CrossRefGoogle Scholar
  4. 4.
    D.J. Wan, H.J. Liu, J.H. Qu, P.J. Lei, S.H. Xiao, Y.N. Hou, Bioresour. Technol. 100, 142 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    Y.X. Zhao, B.G. Zhang, C.P. Feng, F.Y. Huang, P. Zhang, Z.Y. Zhang, Y.N. Yang, N. Sugiura, Bioresour. Technol. 107, 159 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    K.L. Straub, W.A. Schönhuber, B.E. Buchholz-Cleven, B. Schink, Geomicrobiol. J. 21, 371 (2004)CrossRefGoogle Scholar
  7. 7.
    S.K. Chaudhuri, J.G. Lack, J.D. Coates, Appl. Environ. Microbiol. 67, 2844 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    E.M. Muehe, S. Gerhardt, B. Schink, A. Kappler, FEMS Microbiol. Ecol. 70(3), 335 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    Y.K. Sun, J.X. Li, T.L. Huang, X.H. Guan, Water Res. 100, 277 (2016)CrossRefPubMedGoogle Scholar
  10. 10.
    S.F. Cheng, S.C. Wu, Chemosphere 41(8), 1263 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    H.L. Lien, W.X. Zhang, Colloids Surf. A Physicochem. Eng. Asp. 191(1), 97 (2001)CrossRefGoogle Scholar
  12. 12.
    Y.H. Huang, T.C. Zhang, Water Res. 38(11), 2631 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    G.C. Yang, H.L. Lee, Water Res. 39(5), 884 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    J.F. Su, C. Cheng, T.L. Huang, F. Ma, J.S. Lu, S.C. Shao, J. Taiwan Inst. Chem. Eng. 66, 106 (2016)CrossRefGoogle Scholar
  15. 15.
    J.F. Su, S.C. Zheng, T.L. Huang, F. Ma, S.C. Shao, S.F. Yang, L.N. Zhang, Bioresour. Technol. 192, 654 (2015)CrossRefPubMedGoogle Scholar
  16. 16.
    X. Ren, L. He, J. Cheng, J. Chang, PLoS ONE 9(2), 87578 (2014)CrossRefGoogle Scholar
  17. 17.
    C.L. Wan, S. Ding, C. Zhang, X.J. Tan, W.G. Zou, X. Liu, X. Yang, Sep. Purif. Technol. 180, 1 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Vani, P. Binod, M. Kuttiraja, R. Sindhu, S.V. Sandhya, Bioresour. Technol. 112(5), 300 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    T.L. Kirschling, K.B. Gregory, J. Minkley, G. Edwin, G.V. Lowry, R.D. Tilton, Environ. Sci. Technol. 44, 3474 (2010)CrossRefPubMedGoogle Scholar
  20. 20.
    Z.M. Xiu, K.B. Gregory, G.V. Lowry, P.J. Alvarez, Environ. Sci. Technol. 44(19), 7647 (2010)CrossRefPubMedGoogle Scholar
  21. 21.
    M. Auffan, W. Achouak, J. Rose, M. Roncato, C. Chanéac, D.T. Waite, A. Masion, J.C. Woicik, M.R. Wiesner, J. Bottero, Environ. Sci. Technol. 42, 6730 (2008)CrossRefPubMedGoogle Scholar
  22. 22.
    Y. An, Q. Dong, K. Zhang, Chemosphere 103(5), 86 (2014)CrossRefPubMedGoogle Scholar
  23. 23.
    C.P. Huang, H.W. Wang, P.C. Chiu, Water Res. 32, 2257 (1998)CrossRefGoogle Scholar
  24. 24.
    H.R. Dong, F. Zhao, Q. He, Y.K. Xie, Y.L. Zeng, L.H. Zhang, L. Tang, G.M. Zeng, Sep. Purif. Technol. 175, 376 (2017)CrossRefGoogle Scholar
  25. 25.
    S.M.J. Mirazimi, F. Rashchi, M. Saba, Sep. Purif. Technol. 116, 175 (2013)CrossRefGoogle Scholar
  26. 26.
    R.M. Gholami, S.M. Mousavi, S.M. Borghei, J. Ind. Eng. Chem. 18, 218 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Zhang, Y. Liu, G.M. Ai, L.L. Miao, H.Y. Zheng, Z.P. Liu, Bioresour. Technol. 108, 35 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Bae, K. Hanna, Environ. Sci. Technol. 49(17), 10536 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    C. Ruangchainikom, C.H. Liao, J. Anotai, M.T. Lee, Water Res. 40, 195 (2006)CrossRefPubMedGoogle Scholar
  30. 30.
    L. Smith, S.P. Buckwalter, D.A. Repert, D.N. Miller, Water Res. 39, 2014 (2005)CrossRefPubMedGoogle Scholar
  31. 31.
    J.L. Campos, S. Carvalho, R. Portela, A. Mosquera-Corral, R. Méndez, Bioresour. Technol. 99, 1293 (2008)CrossRefPubMedGoogle Scholar
  32. 32.
    J. Zhang, Z. Hao, Z. Zhang, Y. Yang, X. Xu, Process. Saf. Environ. 88(6), 439 (2010)CrossRefGoogle Scholar
  33. 33.
    Y.K. Xie, H.R. Dong, G.M. Zeng, L. Tang, Z. Jiang, C. Zhang, J.M. Deng, L.H. Zhang, Y. Zhang, J. Hazard. Mater. 321, 390 (2017)CrossRefPubMedGoogle Scholar
  34. 34.
    J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Environ. Sci. Technol. 39, 1221 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental and Municipal EngineeringXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations