Effect of surfactants on phase, crystal growth and photocatalysis of calcium stannate synthesized by cyclic microwave and calcination combination
- 156 Downloads
Abstract
Calcium stannate (CaSnO3) was successfully synthesized in the solutions containing different surfactants by cyclic microwave and calcination combination. Phase, morphology and vibration mode were characterized by X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. Growth mechanism of the products was also explained according to the analytical results. Their photocatalytic activities were tested through methylene blue (MB) degradation induced by UV radiation. In the MB solution with pH 6, the S-CTAB product showed the highest decolorization efficiency of 89.1% and the highest rate constant of 4.374 × 10−3 min−1.
Keywords
CaSnO3 Cyclic microwave–calcination combination PhotocatalysisNotes
Acknowledgements
We wish to thank Chiang Mai Rajabhat University, and Prince of Songkla University, Thailand for providing financial support the research, and Center of Excellence in Materials Science and Technology, Chiang Mai University for financial support under the administration of the Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.
References
- 1.H. Cheng, Z. Lu, Solid State Sci. 10, 1042 (2008)CrossRefGoogle Scholar
- 2.W. Wang, J. Bi, L. Wu, Z. Li, X. Fu, Script. Mater. 60, 186 (2009)CrossRefGoogle Scholar
- 3.S. Zhao, Y. Bai, Z. Wei-Feng, Electrochim. Acta 55, 3891 (2010)CrossRefGoogle Scholar
- 4.D.S. Kim, S.J. Han, K. Seung-Yeop, J. Colloid Interface Sci. 316, 85 (2007)CrossRefPubMedGoogle Scholar
- 5.H. Cheng, J. Wang, Y. Zhao, X. Han, RSC Adv. 4, 47031 (2014)CrossRefGoogle Scholar
- 6.M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, J. Mol. Catal. A Chem. 425, 31 (2016)CrossRefGoogle Scholar
- 7.M. Ghiyasiyan-Arani, M. Masjedi-Arani, D. Granbari, S. Bagheri, M. Salavati-Niasari, Sci. Rep. 6, 25231 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
- 8.H. Usui, Mater. Lett. 63, 1489 (2009)CrossRefGoogle Scholar
- 9.J.K. Salem, T.M. Hammad, J. Mater. Sci. Eng. 3, 38 (2009)Google Scholar
- 10.E.O. Oseghe, S. Maddila, P.G. Ndungu, S.B. Jonnalagadda, Appl. Catal. B 176–177, 288 (2015)CrossRefGoogle Scholar
- 11.P. Junploy, S. Thongtem, T. Thongtem, A. Phuruangrat, Superlatt. Microstruct. 74, 173 (2014)CrossRefGoogle Scholar
- 12.M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 27, 4871–4878 (2016)CrossRefGoogle Scholar
- 13.B. Tryba, M. Toyoda, A.W. Morawski, R. Nonaka, M. Inagaki, Appl. Catal. B 71, 163 (2007)CrossRefGoogle Scholar
- 14.Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA (2001)Google Scholar
- 15.V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)CrossRefGoogle Scholar
- 16.F.H. Alhassan, U. Rashid, Y.H. Taufiq-Yap, Fuel 142, 38 (2015)CrossRefGoogle Scholar
- 17.H. Ze-qiang, L. Xin-hai, L. En-hui, H. Zhao-hui, D. Ling-feng, H. Chuan-yue, J. Cent, South. Univ. Technol. 10, 195 (2003)CrossRefGoogle Scholar
- 18.H.S. Kim, S.S. Park, S.H. Kang, Y.E. Sung, J. Appl. Electrochem. 44, 789 (2014)CrossRefGoogle Scholar
- 19.J. Cejka, A. Corma, S. Zones, Zeolites and Catalysis, Synthesis, Reactions and Applications (Wiley, Weinheim, 2010), pp. 1–55CrossRefGoogle Scholar
- 20.I. Sanagawa, Crystal Growth, Morphology, and Perfection (Cambridge University Press, Cambridge, 2005), pp. 44–59CrossRefGoogle Scholar
- 21.S.S. Yi, J.M. Yan, B.R. Wulan, S.J. Li, K.H. Liu, Q. Jiang, Appl. Catal. B 200, 477 (2017)CrossRefGoogle Scholar
- 22.M. Yu, J.M. Yan, X.W. Zhang, M. Zhao, Q. Jiang, J. Mater. Chem. A 3, 15710 (2015)CrossRefGoogle Scholar
- 23.M. Wu, J.M. Yan, M. Zhao, Q. Jiang, ChemPlusChem 77, 931 (2012)CrossRefGoogle Scholar
- 24.R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Ultrason. Sonochem. 42, 201 (2018)CrossRefPubMedGoogle Scholar
- 25.M. Ghiyasiyan-Arani, M. Salavati-Niasari, M. Masjedi-Arani, F. Mazloom, J. Mater. Sci. Mater. Electron. 29, 474 (2018)CrossRefGoogle Scholar
- 26.F. Mazloom, M. Masjedi-Arani, M. Ghiyasiyan-Arani, M. Salavati-Niasari, J. Mol. Liq. 214, 46 (2016)CrossRefGoogle Scholar
- 27.M. Ghiyasiyan-Arani, M. Salavati-Niasari, S. Naseh, Ultrason. Sonochem. 39, 494 (2017)CrossRefPubMedGoogle Scholar
- 28.P. Junploy, S. Thongtem, T. Thongtem, Superlatt. Microstruct. 57, 1 (2013)CrossRefGoogle Scholar
- 29.M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, J. Mol. Liq. 216, 59 (2016)CrossRefGoogle Scholar
- 30.M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, J. Nanostruct. 5, 437 (2015)Google Scholar
- 31.C.K. Govindappa, V.T. Venkatarangaiah, S.B.A. Hamid, Nano-Micro Lett. 5, 101 (2013)CrossRefGoogle Scholar
- 32.A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, Superlatt. Microstruct. 67, 118 (2014)CrossRefGoogle Scholar
- 33.N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, M.Z.C. Hu, Ind. Eng. Chem. Res. 38, 373 (1999)CrossRefGoogle Scholar
- 34.R. Fu, S. Gao, H. Xu, Q. Wang, Z. Wang, B. Huang, Y. Dai, RSC Adv. 4, 37061 (2014)CrossRefGoogle Scholar
- 35.H.K. Singh, M. Saquib, M.M. Haque, M. Muneer, Chem. Eng. J. 136, 77 (2008)CrossRefGoogle Scholar
- 36.U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)CrossRefPubMedGoogle Scholar
- 37.K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Pol. J. Environ. Stud. 19, 685 (2010)Google Scholar
- 38.M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed, Chem. Eng. J. 157, 373 (2010)CrossRefGoogle Scholar
- 39.C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang, RSC Adv. 7, 23699 (2017)CrossRefGoogle Scholar