Research on Chemical Intermediates

, Volume 44, Issue 10, pp 5953–5979 | Cite as

Preparation and characterization of a new CdS–NiFe2O4/reduced graphene oxide photocatalyst and its use for degradation of methylene blue under visible light irradiation

  • Mojtaba BagherzadehEmail author
  • Reyhaneh Kaveh
  • Saim Ozkar
  • Serdar Akbayrak


In this paper, CdS nanoparticles as a visible light active photocatalyst were coupled by NiFe2O4 and reduced graphene oxide (rGO) to form CdS–NiFe2O4/rGO nanocomposite by facile hydrothermal methods. The CdS–NiFe2O4/rGO nanocomposite shows enhanced photocatalytic activity for the degradation of methylene blue (MB) under visible light illumination. In addition to improved photocatalytic performance, this prepared nanocomposite shows increased photostability and is magnetically separable from the aqueous media. The degradation rate constant (kapp) of the optimized photocatalyst, i.e. CdS–NiFe2O4 (0.05)/rGO 25 wt% nanocomposite, was higher than the corresponding CdS and NiFe2O4 nanoparticles by factors of 11.1 and 8.9, respectively. The synergistic interactions between CdS, NiFe2O4 and rGO lead to enhanced surface area, reduced aggregation of the nanoparticles, decreased the recombination of photogenerated electron–hole pairs, and increased the charge separation efficiency and effective electron–hole generation transfer. According to the obtained results, a proposed mechanism of the photodegradation of MB under visible light irradiation is finally mentioned.


Nickel ferrite Cadmium sulfide Reduced graphene oxide Photocatalyst Methylene blue 



M.B. acknowledges the Research Council of Sharif University of Technology for the research funding of this project.


  1. 1.
    P. Suresh, J.J. Vijaya, L.J. Kennedy, Mater. Sci. Semicond. Process. 27, 482 (2014)CrossRefGoogle Scholar
  2. 2.
    B. Xue, Ch. Qv, Zh Qian, Ch. Han, G. Luo, Res. Chem. Intermed. 43, 911 (2017)CrossRefGoogle Scholar
  3. 3.
    E.D. Sherly, J.J. Vijaya, N. Clament Sagaya Selvam, L.J. Kennedy, Ceram. Int. 40, 5681 (2014)CrossRefGoogle Scholar
  4. 4.
    H.R. Mardani, Res. Chem. Intermed. 43, 5795 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Chu, X. Liu, J. Liu, W. Lei, J. Li, T. Wu, P. Li, H. Li, L. Pan, Appl. Surf. Sci. 391, 468 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Sayahi, F. Mohsenzadeh, M. Hamadanian, Res Chem Intermed. 1 (2017)Google Scholar
  7. 7.
    U. Aruldoss, L.J. Kennedy, J.J. Vijaya, G. Sekaran, J. Colloid Interface Sci. 355, 204 (2011)CrossRefPubMedGoogle Scholar
  8. 8.
    N. Clament Sagaya Selvam, J.J. Vijaya, L.J. Kennedy, Ind. Eng. Chem. Res. 51, 16333 (2012)CrossRefGoogle Scholar
  9. 9.
    N. Clament Sagaya Selvam, J.J. Vijaya, L.J. Kennedy, J. Colloid Interface Sci. 407, 215 (2013)CrossRefPubMedGoogle Scholar
  10. 10.
    E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Gao, N. Liu, W. Li, Y. Han, Appl. Organomet. Chem. 32, 4119 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Zang, R. Farnood, Appl. Catal. B Environ. 79, 334 (2008)CrossRefGoogle Scholar
  13. 13.
    Q. Huo, J. Zhao, J. Li, B. Wang, S. Liu, Res. Chem. Intermed. 44, 2347 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Shahid, L. Jingling, Z. Ali, I. Shakir, M.F. Warsi, R. Parveen, M. Nadeem, Mater. Chem. Phys. 139, 566 (2013)CrossRefGoogle Scholar
  15. 15.
    R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, Mater. Chem. Phys. 125, 277 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Wen, K. Moria, Y. Kuwahara, T. An, H. Yamashita, Appl. Catal. B 218, 555 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Yuan, H. Wang, Y. Wu, X. Chen, G. Zeng, L. Leng, C. Zhang, Catal. Commun. 61, 62 (2015)CrossRefGoogle Scholar
  18. 18.
    N.R. Su, P. Lv, M. Li, X. Zhang, M. Li, J. Niu, Mater. Lett. 122, 201 (2014)CrossRefGoogle Scholar
  19. 19.
    R.M. Khafagy, J. Alloys Compd. 509, 9849 (2011)CrossRefGoogle Scholar
  20. 20.
    M.A. Gibson, J.W. Hightower, J. Catal. 41, 420 (1976)CrossRefGoogle Scholar
  21. 21.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Ceram. Int. 42, 2741 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Guin, B. Baruwati, S.V. Manorama, J. Mol. Catal. A Chem. 242, 26 (2005)CrossRefGoogle Scholar
  23. 23.
    Z. Li, X. Lai, H. Wang, D. Mao, C. Xing, D. Wang, J. Phys. Chem. C Nanomater. Interfaces 113, 2792 (2009)CrossRefGoogle Scholar
  24. 24.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, H.A. Al-Lohedan, R.J. Ramalingam, Mater. Chem. Phys. 194, 153 (2017)CrossRefGoogle Scholar
  25. 25.
    M.S. Selim, G. Turky, M.A. Shouman, G.A. El-Shobaky, Solid State Ion. 120, 173 (1999)CrossRefGoogle Scholar
  26. 26.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, K. Kaviyarasu, R.J. Ramalingam, H.A. Al-Lohedan, M.A. Munusamy, J. Mater. Sci. Mater. Electron. 28, 10321 (2017)CrossRefGoogle Scholar
  27. 27.
    J.B. da Silva, N.D.S. Mohallem, J. Magn. Magn. Mater. 226–230, 1393 (2001)CrossRefGoogle Scholar
  28. 28.
    Y. Cheng, Y. Zheng, Y. Wang, F. Bao, Y. Qin, J. Solid State Chem. 178, 2394 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Salavati-Niasari, F. Davar, T. Mahmoudi, Polyhedron 28, 1455 (2009)CrossRefGoogle Scholar
  30. 30.
    S.K. Jesudoss, J.J. Vijaya, L.J. Kennedy, P. Iyyappa Rajan, H.A. Al-Lohedan, R.J. Ramalingam, K. Kaviyarasu, M. Bououdina, J. Photochem. Photobiol. B 165, 121 (2016)CrossRefPubMedGoogle Scholar
  31. 31.
    P. Xiong, J. Zhu, X. Wang, Ind. Eng. Chem. Res. 52, 17126 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Ind. Eng. Chem. Res. 51, 11700 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, S. Wang, J. Hazard. Mater. 270, 61 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    X. Yu, R. Du, B. Li, Y. Zhang, H. Liu, J. Qu, X. An, Appl. Catal. B Environ. 182, 504 (2016)CrossRefGoogle Scholar
  35. 35.
    S.Q. Liu, B. Xiao, L.R. Feng, S.S. Zhou, Z.G. Chen, C.B. Liu, F. Chen, Z.Y. Wu, N. Xu, W.C. Oh, Z. Da Meng, Carbon 64, 197 (2013)CrossRefGoogle Scholar
  36. 36.
    C. Santhosh, P. Kollu, S. Felix, V. Velmurugan, S.K. Jeong, A.N. Grace, RSC Adv. 5, 28965 (2015)CrossRefGoogle Scholar
  37. 37.
    G.J. Rani, M.A. Jothi Rajan, G. Gnana kumar, Res. Chem. Intermed. 43, 2669 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Hu, X. Liu, B. Liu, L. Li, W. Qin, H. Yu, S. Zhong, Y. Li, Z. Ren, M. Wang, J. Colloid Interface Sci. 496, 254 (2017)CrossRefPubMedGoogle Scholar
  39. 39.
    N. Zhang, Y. Zhang, X. Pan, X. Fu, S. Liu, Y.J. Xu, J. Phys. Chem. C 115, 23501 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Fu, X. Sun, X. Wang, Mater. Chem. Phys. 131, 325 (2011)CrossRefGoogle Scholar
  41. 41.
    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  42. 42.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. Al-Lohedan, Mater. Chem. Phys. 204, 410 (2018)Google Scholar
  43. 43.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, B. Al-Najar, J. Phys. Chem. Solids 115, 162 (2018)CrossRefGoogle Scholar
  44. 44.
    B. Liu, X. Liu, J. Liu, C. Feng, Z. Li, C. Li, Y. Gong, L. Pan, S. Xu, C. Sun, Appl. Catal. B 226, 234 (2018)CrossRefGoogle Scholar
  45. 45.
    N. Clament Sagaya Selvam, A. Manikandan, L.J. Kennedy, J.J. Vijaya, J. Colloid Interface Sci. 389, 91 (2013)CrossRefPubMedGoogle Scholar
  46. 46.
    S.K. Jesudoss, J.J. Vijaya, N. Clament Sagaya Selvam, K. Kombaiah, M. Sivachidambaram, T. Adinaveen, L.J. Kennedy, Clean Technol. Environ. Policy 18, 729 (2016)CrossRefGoogle Scholar
  47. 47.
    W. Jo, T. Adinaveen, J.J. Vijaya, N. Clament Sagaya Selvam, RSC Adv. 6, 10487 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySharif University of TechnologyTehranIran
  2. 2.Department of ChemistryMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of Chemistry, Faculty of Arts and ScienceSinop UniversitySinopTurkey

Personalised recommendations