Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 10, pp 5697–5709 | Cite as

Design and preparation of high-aspect-ratio zinc borate whiskers and their effects on mechanical properties of PP nanocomposite

  • Xin Liu
  • Li Dang
  • Xueying Nai
  • Yaping Dong
  • Wu Li
Article
  • 40 Downloads

Abstract

Well-dispersed, high-aspect-ratio 4ZnO·B2O3·H2O whiskers (4ZnO·B2O3·H2OHARw) were synthesized by a facile hydrothermal method with the aid of ZnSO4·7H2O. The formation mechanism was investigated, and the results showed that Zn2+ and SO 4 2− ions played a crucial role in the control of 4ZnO·B2O3·H2OHARw extended along [010] direction. X-ray diffraction (XRD) analysis, high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetry (TG)-differential scanning calorimetry (DSC) results confirmed that the powder was 4ZnO·B2O3·H2O. Scanning electron microscopy (SEM) and TEM showed that the average aspect ratio of the product was about 100. Nanocomposites of surface-modified 4ZnO·B2O3·H2OSM-HARw/PP were prepared and their mechanical properties measured. The results suggested that the mechanical properties of 4ZnO·B2O3·H2OSM-HARw/PP composites were superior to composites made with low-aspect-ratio whiskers (4ZnO·B2O3·H2OSM-LARw), which displayed poorer mechanical properties even at low addition.

Keywords

Hydrothermal Crystal growth Borates High aspect ratio 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 51402323) and West Light Project of the Chinese Academy of Sciences (no. 2018314).

Supplementary material

11164_2018_3450_MOESM1_ESM.docx (10.5 mb)
Supplementary material 1 (DOCX 10778 kb)

References

  1. 1.
    C.M. Feng, Y. Zhang, D. Liang, S.W. Liu, Z.G. Chi, J.R. Xu, J. Anal. Appl. Pyrol. 115, 224 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Wang, A.Q. Zhang, Z.H. Liu, J. Chem. Thermodyn. 82, 88 (2015)CrossRefGoogle Scholar
  3. 3.
    C.V. Reddy, J. Shim, C. Byon, G. Sarma, P.N. Murthy, R. Ravikumar, J. Mol. Struct. 1081, 311 (2015)CrossRefGoogle Scholar
  4. 4.
    X.X. Shi, L.J. Yuan, X.Z. Sun, C.X. Chang, J.T. Sun, J. Phys. Chem. C 112, 3558 (2008)CrossRefGoogle Scholar
  5. 5.
    Y.Y. Zhang, L. Xue, Z.H. Liu, Thermochim. Acta 506, 52 (2010)CrossRefGoogle Scholar
  6. 6.
    Y.H. Gao, Z.H. Liu, J. Chem. Eng. Data 54, 2789 (2009)CrossRefGoogle Scholar
  7. 7.
    Y.H. Zheng, Y.M. Tian, H.L. Ma, Y.N. Qu, Z.C. Wang, D.M. An, S. Guan, X.Y. Gao, Colloids Surf. A Physicochem. Eng. Asp. 339, 178 (2009)CrossRefGoogle Scholar
  8. 8.
    X. Liu, W. Li, X.Y. Nai, S.J. Bian, Q.F. Meng, D.D. Gao, M. Wei, Cryst. Res. Technol. 47, 455 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Mergen, Y. İpek, H. Bölek, M. Öksüz, J. Eur. Ceram. Soc. 32, 2001 (2012)CrossRefGoogle Scholar
  10. 10.
    B. Fischer, M. Ziadeh, A. Pfaff, J. Breu, V. Altstädt, Polymer 53, 3230 (2012)CrossRefGoogle Scholar
  11. 11.
    P. Cai, Z.L. Li, T.M. Wang, Q.H. Wang, Tribol. Int. 92, 109 (2015)CrossRefGoogle Scholar
  12. 12.
    W.J. Boo, L. Sun, G.L. Warren, E. Moghbelli, H. Pham, A. Clearfield, H.J. Sue, Polymer 48, 1075 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Zhang, Z. Zhang, K. Friedrich, Compos. Sci. Technol. 67, 222 (2007)CrossRefGoogle Scholar
  14. 14.
    W.C. Xu, D.L. Li, Y.B. Fu, R.J. Liao, J.Z. Shi, Y.J. Wang, X.H. He, J. Appl. Polym. Sci. 133, 10 (2016)Google Scholar
  15. 15.
    H. Danso, D.B. Martinson, M. Ali, J. Williams, Constr. Build. Mater. 83, 314 (2015)CrossRefGoogle Scholar
  16. 16.
    R.H. Poelma, B. Morana, S. Vollebregt, E. Schlangen, H.W. van Zeijl, X.J. Fan, G.Q. Zhang, Adv. Funct. Mater. 24, 5737 (2014)CrossRefGoogle Scholar
  17. 17.
    X.X. Shi, M. Li, H. Yang, S.P. Chen, L.J. Yuan, K.L. Zhang, J.T. Sun, Mater. Res. Bull. 42, 1649 (2007)CrossRefGoogle Scholar
  18. 18.
    D.J. Joyner, D.M. Hercules, J. Chem. Phys. 72, 1095 (1980)CrossRefGoogle Scholar
  19. 19.
    M. Das, A.K. Basu, S. Ghatak, A.G. Joshi, J. Eur. Ceram. Soc. 29, 2129 (2009)CrossRefGoogle Scholar
  20. 20.
    Q. Shi, Y.P. Lei, Y.D. Wang, H.P. Wang, L.H. Jiang, H.L. Yuan, D. Fang, B. Wang, N. Wu, Y.Z. Gou, Curr. Appl. Phys. 15, 1606 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Kohiki, T. Ohmura, K. Kusao, J. Electron Spectrosc. Relat. Phenom. 28, 229 (1983)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, W. Li, F.M. Ma, Z.L. Yu, M. Ruan, Y.G. Ding, X.Y. Deng, Appl. Surf. Sci. 280, 898 (2013)CrossRefGoogle Scholar
  23. 23.
    P. Verma, P. Saini, V. Choudhary, Mater. Des. 88, 269 (2015)CrossRefGoogle Scholar
  24. 24.
    M. El Achaby, A. Qaiss, Mater. Des. 44, 81 (2013)CrossRefGoogle Scholar
  25. 25.
    M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim, S.H. Hong, Scr. Mater. 66, 487 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Haque, A. Ramasetty, Compos. Struct. 71, 68 (2005)CrossRefGoogle Scholar
  27. 27.
    H. Wan, F. Delale, L. Shen, Mech. Res. Commun. 32, 481 (2005)CrossRefGoogle Scholar
  28. 28.
    J.T. Di, X.H. Zhang, Z.Z. Yong, Y.Y. Zhang, D. Li, R. Li, Q.W. Li, Adv. Mater. 28, 10529 (2016)CrossRefPubMedGoogle Scholar
  29. 29.
    X.J. Cui, S.H. Yu, L.L. Li, K. Li, B. Yu, Adv. Mater. 16, 1109 (2004)CrossRefGoogle Scholar
  30. 30.
    X.L. Zeng, S.H. Yu, L. Ye, M.Y. Li, Z.L. Pan, R. Sun, J.B. Xu, J. Mater. Chem. C 3, 187 (2015)CrossRefGoogle Scholar
  31. 31.
    T.Z. Hong, Z.H. Lv, X. Liu, W. Li, X.Y. Nai, Y.P. Dong, Mater. Des. 107, 117 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Dang, X.Y. Nai, D.H. Zhu, Y.W. Jing, X. Liu, Y.P. Dong, W. Li, Appl. Surf. Sci. 317, 325 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Dang, X.Y. Nai, X. Liu, D.H. Zhu, Y.P. Dong, W. Li, Chin. J. Polym. Sci. 35, 659 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Xin Liu
    • 1
    • 2
  • Li Dang
    • 3
    • 4
  • Xueying Nai
    • 1
    • 2
  • Yaping Dong
    • 1
    • 2
  • Wu Li
    • 4
  1. 1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningPeople’s Republic of China
  2. 2.Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake ResourcesXiningPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Key Laboratory of Salt Lake Resources Chemistry of Qinghai ProvinceXiningPeople’s Republic of China

Personalised recommendations