Advertisement

Investigating effect of pH values on CeSiW catalyst for the selective catalytic reduction of NO by NH3

  • Zhongxian Song
  • Yongmei Fu
  • Ping Ning
  • Hongpan Liu
  • Dong Ren
  • Haiyan KangEmail author
  • Biao Liu
  • Yanli Mao
  • Yifei Guo
  • Qiulin ZhangEmail author
Article
  • 1 Downloads

Abstract

The effect of different pH values (8, 9, 10 and 11) on the catalytic activity over CeSiW catalysts was investigated for the selective catalytic reduction of NO by NH3. CeSiW-9 showed a remarkable higher NOx conversion. The strongest interaction was observed between silicotungstic acid and CeO2 over CeSiW-9, resulting in the improvement of redox ability and surface acidity, which could increase the catalytic activity. The superior catalytic performance of the CeSiW-9 catalyst was attributed to the favored pore structures, excellent redox ability and the abundance of surface acid sites, which depended on pH values in the preparation process of CeSiW catalysts.

Keywords

Selective catalytic reduction Silicotungstic acid Pore structures Redox ability Surface acid sites 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21307047; No. 51509083), Henan Key Scientific Research Projects (No. 18A610002; No. 16A610005) and Doctoral Research Start-up Project of Henan University of Urban Construction (No. 990/Q2017011).

References

  1. 1.
    W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, Appl. Catal. B Environ. 115–116, 100 (2012)CrossRefGoogle Scholar
  2. 2.
    D.M. Chapman, Appl. Catal. A Gen. 392, 143 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Iwasaki, K. Yamazaki, K. Banno, H. Shinjoh, J. Catal. 260, 205 (2008)CrossRefGoogle Scholar
  4. 4.
    H.D. Xu, Y. Wang, Y. Cao, Z.T. Fang, T. Lin, M.C. Gong, Y.Q. Chen, J. Chem. Eng. 240, 62 (2014)CrossRefGoogle Scholar
  5. 5.
    S.J. Yang, C.Z. Wang, J.H. Li, N.Q. Yan, L. Ma, H.Z. Chang, Appl. Catal. B Environ. 110, 71 (2011)CrossRefGoogle Scholar
  6. 6.
    Y.J. Kim, H.J. Kwon, I. Heo, I.S. Nam, B.K. Cho, J.W. Choung, M.S. Cha, G.K. Yeo, Appl. Catal. B Environ. 126, 9 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Catal. Rev. 50, 492 (2008)CrossRefGoogle Scholar
  8. 8.
    P.S. Metkar, M.P. Harold, V. Balakotaiah, Appl. Catal. B Environ. 111–112, 67 (2012)CrossRefGoogle Scholar
  9. 9.
    C. He, Y. Wang, Y. Cheng, C.K. Lambert, R.T. Yang, Appl. Catal. A Gen. 368, 121 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Kamasamudram, N.W. Currier, X. Chen, A. Yezerets, Catal. Today 151, 212 (2010)CrossRefGoogle Scholar
  11. 11.
    L. Ren, L. Zhu, C. Yang, Y. Chen, Q. Sun, H. Zhang, C. Li, F. Nawaz, X. Meng, F.S. Xiao, Chem. Commun. 47, 9789 (2011)CrossRefGoogle Scholar
  12. 12.
    R.Y. Qu, X. Gao, K.F. Cen, J.H. Li, Appl. Catal. B Environ. 142–143, 290 (2013)CrossRefGoogle Scholar
  13. 13.
    T. Gu, Y. Liu, X. Weng, H. Wang, Z. Wu, Catal. Commun. 12, 310 (2010)CrossRefGoogle Scholar
  14. 14.
    D.Z. Si, X. Weng, J. Wu, B. Yang, Wang, Catal. Commun. 11, 1045 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Casapu, A. Bernhard, D. Peitz, M. Mehring, M. Elsener, O. Kröcher, Appl. Catal. B Environ. 103, 79 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Chen, J. Li, M. Ge, R. Zhu, Catal. Today 153, 77 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Gao, P. Wang, X. Chen, H. Wang, Z. Wu, Y. Liu, X. Weng, Catal. Commun. 43, 223 (2014)CrossRefGoogle Scholar
  18. 18.
    W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, Appl. Catal. B Environ. 115–116, 100 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Peng, J.H. Li, L. Chen, J.H. Chen, J. Han, H. Zhang, W. Han, Environ. Sci. Technol. 46, 2864 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Fan, P. Ning, Z.X. Song, X. Liu, L.Y. Wang, J. Wang, H.M. Wang, K.X. Long, Q.L. Zhang, Chem. Eng. J. 334, 855 (2018)CrossRefGoogle Scholar
  21. 21.
    Z.B. Xiong, J. Liu, F. Zhou, D.Y. Liu, W. Lu, J. Jin, S.F. Ding, Appl. Surf. Sci. 406, 218 (2017)CrossRefGoogle Scholar
  22. 22.
    Z.B. Xiong, P. Bai, F. Zhou, C. Wu, W. Lu, J. Jin, S.F. Ding, Powder Technol. 319, 19 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Liu, G.Q. Li, Y.F. Zhang, X.Q. Liu, Y. Wang, Y. Li, Appl. Surf. Sci. 401, 7 (2017)CrossRefGoogle Scholar
  24. 24.
    K. Zhao, W.L. Han, G.X. Lu, J.Y. Lu, Z.C. Tang, X.P. Zhen, Appl. Surf. Sci. 379, 316 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Liu, F.D. Liu, L.J. Xie, W.P. Shan, H. He, Catal. Sci. Technol. 5, 2290 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Zhang, Q. Zhong, W. Zhao, L.M. Yu, H.X. Qu, Appl. Surf. Sci. 289, 237 (2014)CrossRefGoogle Scholar
  27. 27.
    H.D. Xu, X. Feng, S. Liu, Y. Wang, M.M. Sun, J.L. Wang, Y.Q. Chen, Appl. Surf. Sci. 419, 697 (2017)CrossRefGoogle Scholar
  28. 28.
    X.L. Weng, X.X. Dai, Q.S. Zeng, Y. Liu, Z.B. Wu, J. Colloid Interface Sci. 461, 9 (2016)CrossRefGoogle Scholar
  29. 29.
    Z.X. Song, L.Y. Wang, Q.L. Zhang, P. Ning, J. Hu, T. Tang, X. Liu, B. Li, J. Taiwan Inst. Chem. Eng. 000, 1 (2018)Google Scholar
  30. 30.
    Z.X. Song, P. Ning, Q.L. Zhang, X. Liu, J.H. Zhang, Y.C. Wang, Y.K. Duan, Z.Z. Huang, J. Mol. Catal. A Chem. 413, 15 (2016)CrossRefGoogle Scholar
  31. 31.
    Q.L. Zhang, Z.X. Song, P. Ning, X. Liu, H. Li, J.J. Gu, Catal. Commun. 59, 170 (2015)CrossRefGoogle Scholar
  32. 32.
    B.M. Reddy, A. Khan, P. Lakshmanan, J. Phys. Chem. B 109, 3355 (2005)CrossRefGoogle Scholar
  33. 33.
    G. Colon, F. Valdivieso, M. Pijolat, R.T. Baker, J.J. Calvino, S. Bernal, Catal. Today 50, 271 (1999)CrossRefGoogle Scholar
  34. 34.
    B.M. Reddy, P. Bharali, P. Saikia, A. Khan, S. Loridant, M. Muhler, W. Grünert, J. Phys. Chem. C 111, 1878 (2007)CrossRefGoogle Scholar
  35. 35.
    B. Guan, H. Lin, L. Zhu, B. Tian, Z. Huang, Chem. Eng. 181–182, 307 (2012)CrossRefGoogle Scholar
  36. 36.
    F.D. Liu, H. He, J. Phys. Chem. C 114, 16929 (2010)CrossRefGoogle Scholar
  37. 37.
    B. Murugan, A.V. Ramaswamy, J. Phys. Chem. C 112, 20429 (2008)CrossRefGoogle Scholar
  38. 38.
    Y. Peng, J.H. Li, L. Chen, J.H. Chen, J. Han, H. Zhang, W. Han, Environ. Sci. Technol. 46, 2864 (2012)CrossRefGoogle Scholar
  39. 39.
    N. Sutradhar, A. Sinhamahapatra, S. Pahari, M. Jayachandran, B. Subramanian, H.C. Bajaj, A.B. Panda, J. Phys. C 115, 7628 (2011)Google Scholar
  40. 40.
    L. Chen, Z.C. Si, X.D. Wu, D. Weng, ACS Appl. Mater. Interfaces 6, 8134 (2014)CrossRefGoogle Scholar
  41. 41.
    Z.M. Liu, J.Z. Zhu, J.H. Li, L.L. Ma, S.I. Woo, ACS Appl. Mater. Interfaces 6, 14500 (2014)CrossRefGoogle Scholar
  42. 42.
    Z.H. Lian, F.D. Liu, H. He, Ind. Eng. Chem. Res. 53, 19506 (2014)CrossRefGoogle Scholar
  43. 43.
    R.H. Gao, D.S. Zhang, P. Maitarad, L.Y. Shi, T. Rungrotmongkol, H.R. Li, J.P. Zhang, W.G. Cao, J. Phys. Chem. C 117, 10502 (2013)CrossRefGoogle Scholar
  44. 44.
    R.Q. Long, R.T. Yang, J. Catal. 190, 22 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Henan University of Urban Construction, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation TechnologyPingdingshanPeople’s Republic of China
  2. 2.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  3. 3.College of Materials and Chemical EngineeringChongqing University of Arts and SciencesChongqingPeople’s Republic of China
  4. 4.College of Environmental Science and EngineeringChina West Normal UniversityNanchongPeople’s Republic of China

Personalised recommendations