Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): a novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3,2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-ones

  • Masoud Khaleghi-Abbasabadi
  • Davood AzarifarEmail author


Synthesis of a novel magnetic 1-naphthalenesulfonic acid-grafted graphene oxide (Fe3O4-GO-naphthalene-SO3H) via a three-step procedure has been described. The structure of this newly synthesized nanographene oxide was fully characterized by X-ray diffraction, energy dispersive X‐ray, vibrating sample magnetometer, scanning electron microscopy, Fourier-transform infrared, Raman spectroscopy, and thermo-gravimetric analytical techniques. The catalytic efficiency of these nanoparticles as recyclable nanocatalyst was explored in one-pot three-component reaction between aldehydes, malononitrile, and 4-hydroxyquinolin-2(1H)-one or 4-hydroxycoumarin under green conditions in water for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-ones and 5-oxo-dihydropyrano[3,2-c]chromenes (coumarins) respectively. High yields of the products, low reaction times, easy preparation of the catalyst, and use of water as green solvent are the main advantages of this protocol. In addition, the catalyst can be easily separated simply by using a magnet and reused for six fresh runs without significant loss of activity.

Graphical abstract


Magnetic 1-naphthalenesulfonic acid-grafted graphene oxide Nanocatalyst Pyrano[3,2-c]quinolin-5-one Pyrano[3,2-c]chromene Three-component reaction 



The authors wish to thank the Research Council of Bu‐Ali Sina University for financial support to carry out this research. Islamic Azad University, North Tehran Branch, is also greatly acknowledged for technical support.

Supplementary material

11164_2018_3722_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2829 kb)


  1. 1.
    R. Wohlgemuth, New Biotechnol. 25, 204 (2009)CrossRefGoogle Scholar
  2. 2.
    R. Ballini, F. Bigi, M.L. Conforti, D.D. Santis, R. Maggi, G. Oppici, G. Sartori, Catal. Today 60, 305 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 39, 3168 (2000)CrossRefGoogle Scholar
  4. 4.
    S.Y. Wei, Q. Wang, J.H. Zhu, L.Y. Sun, H.F. Lin, Z.H. Guo, Nanoscale. 3, 4474 (2011)CrossRefGoogle Scholar
  5. 5.
    C.Y. Li, C. Ma, F. Wang, Z.J. Xi, Z.F. Wang, Y. Deng, N.Y. He, J. Nanosci. Nanotechnol. 12, 2964 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Li, Z. Tang, Nanoscale. 6, 3995 (2014)CrossRefGoogle Scholar
  7. 7.
    R.G. Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)CrossRefGoogle Scholar
  8. 8.
    M.J. Yao, Z. Guan, Y.H. He, Synth. Commun. 43, 2073 (2013)CrossRefGoogle Scholar
  9. 9.
    D.R. Dreyer, H.P. Jia, C.W. Bielawski, Angew. Chem. Int. Ed. 49, 6813 (2010)Google Scholar
  10. 10.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)CrossRefGoogle Scholar
  11. 11.
    J.M. Khurana, K. Vij, Tetrahedron Lett. 52, 3666 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Karami, K. Eskandari, S. Khodabakhshi, Arkivoc Ix, 76 (2012)Google Scholar
  13. 13.
    A. Rashidi, M. Khaleghi Abbasabadi, S. Khodabakhshi, J. Nat. Gas Sci. Eng. 36, 13 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Rashidi, Z. Tavakoli, Y. Tarak, S. Khodabakhshi, M.K. Abbasabadi, J. Chin. Chem. Soc. 63, 399 (2016)CrossRefGoogle Scholar
  15. 15.
    M.K. Abbasabadi, A. Rashidi, J. Safaei-Ghomi, S. Khodabakhshi, R. Rahighi, J. Sulf. Chem. 36, 660 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)CrossRefGoogle Scholar
  17. 17.
    D.W. Wang, F. Li, J.P. Zhao, W.C. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 3, 1745 (2009)CrossRefGoogle Scholar
  18. 18.
    I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577 (2010)CrossRefGoogle Scholar
  19. 19.
    K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)CrossRefGoogle Scholar
  20. 20.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 200 (2005)CrossRefGoogle Scholar
  21. 21.
    S. Khodabakhshi, F. Marahel, A. Rashidi, M.K. Abbasabadi, J. Chin. Chem. Soc. 62, 389 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Hu, M. Patel, F. Luo, C. Flach, R. Mendelsohn, E. Garfunkel, H. He, M. Szostak, J. Am. Chem. Soc. 137, 14473 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Majumdar, D. Sarma, T. Bhattacharya, T.K. Sarma, A.C.S. Sustain, Chem. Eng. 5, 9286 (2017)Google Scholar
  24. 24.
    H. Hea, J. Klinowskia, M. Forsterb, A. Lerfb, Chem. Phys. Lett. 287, 53 (1998)CrossRefGoogle Scholar
  25. 25.
    I.S. Chen, I.W. Tsai, C.M. Teng, J.J. Chen, Y.L. Chang, F.N. Ko, M.C. Lu, J.M. Pezzuto, Phytochemistry 46, 525 (1997)CrossRefGoogle Scholar
  26. 26.
    H.K. Wabo, P. Tane, J.D. Connolly, C.C. Okunji, B.M. Schuster, M.M. Iwu, Nat. Prod. Res. 19, 591 (2005)CrossRefGoogle Scholar
  27. 27.
    J.P. Michael, Nat. Prod. Rep. 20, 476 (2003)CrossRefGoogle Scholar
  28. 28.
    M.J. Yao, Z. Guan, Y.H. He, Synth. Commun. 43, 2073 (2013)CrossRefGoogle Scholar
  29. 29.
    M.M. Abdou, Arab. J. Chem. 10, 3324 (2017)CrossRefGoogle Scholar
  30. 30.
    U. Emde, K. Schiemann, T. Schlueter, C. Saal, M. Maiwald. WO Patent. 147480A2 (2007)Google Scholar
  31. 31.
    E. Abbaspour-Gilandeh, M. Aghaei-Hashjinb, A. Yahyazadeh, H. Salemi, RSC Adv. 6, 55444 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Asghari-Haji, K. Rad-Moghadam, N.O. Mahmoodi, T. Tonekaboni, N. Rahimi, Appl. Organomet. Chem. 31, e3891 (2017)CrossRefGoogle Scholar
  33. 33.
    X.S. Wang, Z.S. Zeng, D.Q. Shi, X.Y. Wei, Z.M. Zong, Synth. Commun. 34, 3021 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Lei, L. Ma, L.H. Hu, Tetrahedron Lett. 52, 2597 (2011)CrossRefGoogle Scholar
  35. 35.
    Z. Tashrifi, K. Rad-Moghadam, M. Mehrdad, J. Mol. Liq. 248, 278 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Azarifar, Y. Abbasi, O. Badalkhani, Appl. Organomet. Chem. 32, e3949 (2017)CrossRefGoogle Scholar
  37. 37.
    B. Karami, S. Khodabakhshi, K. Eskandari, Chem. Pap. 67, 1474 (2013)Google Scholar
  38. 38.
    J.C. Capraa, M.P. Cunhaa, D.G. Machadoa, A.D.E. Zomkowskia, B.G. Mendesc, A.R.S. Santos, M.G. Pizzolattic, S.A.L. Rodrigues, Eur. J. Pharmacol. 643, 232 (2010)CrossRefGoogle Scholar
  39. 39.
    B. Karami, M. Kiani, J. Chin. Chem. Soc. 61, 213 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Witaicenis, L.N. Seito, A. da Silveira Chagas, L. Dominguesde Almeida, A.C. Uchini, P. Rodrigues-Orsi, S.H. Cestari, L.C.D. Stasi, Phytomedicine 21, 240 (2014)CrossRefGoogle Scholar
  41. 41.
    X. Ni, Y. Guo, H. Bu, J. An, D. En, J. Chin. Chem. Soc. 59, 1439 (2012)CrossRefGoogle Scholar
  42. 42.
    H. Nagabhushana, S.S. Saundalkar, L. Muralidhar, B.M. Nagab-hushana, C.R. Girija, D. Nagaraja, M.A. Pasha, V.P. Jayashankara, Chin. Chem. Lett. 22, 143 (2011)CrossRefGoogle Scholar
  43. 43.
    M. Seifi, H. Sheibani, Catal. Lett. 126, 275 (2008)CrossRefGoogle Scholar
  44. 44.
    T.S. Jin, L.B. Liu, Y. Zhao, T.S. Li, Synth. Commun. 35, 1859 (2005)CrossRefGoogle Scholar
  45. 45.
    B.N. Seshu, N. Pasha, R.K.T. Venkateswara, P.P.S. Sai, N. Lingaiah, Tetrahedron Lett. 49, 2730 (2008)CrossRefGoogle Scholar
  46. 46.
    S. Balalaie, S. Abdolmohammadi, Tetrahedron Lett. 48, 3299 (2007)CrossRefGoogle Scholar
  47. 47.
    S. Banerjee, A. Horn, H. Khatri, G. Sereda, Tetrahedron Lett. 52, 1878 (2011)CrossRefGoogle Scholar
  48. 48.
    M.M. Heravi, B. Alimadadi Jani, F. Derikvand, F.F. Bamoharram, H.A. Oskooie, Catal. Commun 10, 272 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Peng, G. Song, Catal. Commun. 8, 111 (2007)CrossRefGoogle Scholar
  50. 50.
    W.S.J. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  51. 51.
    M.K. Abbasabadi, A. Rashidi, S. Khodabakhshi, J. Nat. Gas Sci. Eng. 28, 87 (2016)CrossRefGoogle Scholar
  52. 52.
    M.Z. Kassaee, E. Motamedi, M. Majdi, Chem. Eng. J. 172, 540 (2011)CrossRefGoogle Scholar
  53. 53.
    C. Nethravathi, M. Rajamathi, Carbon 46, 1994 (2008)CrossRefGoogle Scholar
  54. 54.
    G. Chen, S. Zhai, Y. Zhai, K. Zhang, Q. Yue, L. Wang, J. Zhao, H. Wang, J. Liu, J. Jia, Biosens. Bioelectron. 26, 3136 (2011)CrossRefGoogle Scholar
  55. 55.
    J.S. Wang, R.T. Peng, J.H. Yang, Y.C. Liu, X.J. Hu, Carbohydr. Polym. 84, 1169 (2011)CrossRefGoogle Scholar
  56. 56.
    X.J. Hu, Y.G. Liu, H. Wang, A.W. Chen, G.M. Zeng, S.M. Liu et al., Sep. Purif. Technol. 108, 189 (2013)CrossRefGoogle Scholar
  57. 57.
    L.Z. Bai, D.L. Zhao, Y. Xu, J.M. Zhang, Y.L. Gao, L.Y. Zhao, J.T. Tang, Mater. Lett. 68, 399 (2012)CrossRefGoogle Scholar
  58. 58.
    X. Huo, J. Liu, B. Wang, H. Zhang, Z. Yang, X. Sheb, P. Xia, J. Mater. Chem. A. 1, 656 (2013)Google Scholar
  59. 59.
    S. Khodabakhshi, B. Karami, New J. Chem. 38, 3586 (2014)CrossRefGoogle Scholar
  60. 60.
    H. Kim, K.Y. Park, J. Hong, K. Kang, Sci. Rep. 4, 5278 (2014)CrossRefGoogle Scholar
  61. 61.
    C. Hou, Q. Zhang, M. Zhu, Y. Li, H. Wang, Carbon 49, 47 (2011)CrossRefGoogle Scholar
  62. 62.
    E. Rafiee, M. Khodayari, RSC Adv. 6, 36433 (2016)CrossRefGoogle Scholar
  63. 63.
    M. Rohaniyan, A. Davoodnia, A. Nakhaei, Appl. Organomet. Chem. 30, 626 (2016)CrossRefGoogle Scholar
  64. 64.
    A. Kumar, L. Rout, L.S. Kumar Achary, S.D. Rajendra, P. Dash, Sci. Rep. 7, 42975 (2017)CrossRefGoogle Scholar
  65. 65.
    M. Mirza-Aghayan, M. Molaee Tavana, R. Boukherroub, Ultrason. Sonochem. 29, 371 (2016)CrossRefGoogle Scholar
  66. 66.
    P. Li, Y. Gao, Z. Sun, D. Chang, G. Gao, A. Dong, Molecules 22, 12 (2017)CrossRefGoogle Scholar
  67. 67.
    K. Tabatabaeian, H. Heidari, M. Mamaghani, N.O. Mahmoodi, Appl. Organomet. Chem. 26, 56 (2012)CrossRefGoogle Scholar
  68. 68.
    M. Khoobi, L. Ma’mani, F. Rezazadehb, Z. Zareieb, A. Foroumadia, A. Ramazanib, J. Mol. Catal. A Chem 359, 74 (2012)CrossRefGoogle Scholar
  69. 69.
    D. Azarifar, O. Badalkhani, Y. Abbasi, M. Hasanabadi, J. Iran. Chem. Soc. 14, 403 (2017)CrossRefGoogle Scholar
  70. 70.
    A. Montaghami, N. Montazeri, Orient. J. Chem. 30, 1361 (2014)CrossRefGoogle Scholar
  71. 71.
    R. Ghahremanzadeh, G.H. Imani Shakibaei, A. Bazgir, Synlett 8, 1129 (2008)Google Scholar
  72. 72.
    S. Balalaie, S. Abdolmohammadi, Tetrahedron Lett. 48, 3299 (2007)CrossRefGoogle Scholar
  73. 73.
    H.J. Wang, J. Lu, Z.H. Zhang, Monatshefte Chem. 141, 1107 (2010)CrossRefGoogle Scholar
  74. 74.
    D. Azarifar, M. Ghaemi, Appl. Organomet. Chem. 31, e3834 (2017)CrossRefGoogle Scholar
  75. 75.
    D. Azarifar, O. Badalkhani, Y. Abbasi, J. Sulf. Chem. 37, 656 (2016)CrossRefGoogle Scholar
  76. 76.
    D. Azarifar, M. Khaleghi-Abbasabadi, Res. Chem. Intermed. (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryBu‐Ali Sina UniversityHamedanIran

Personalised recommendations