Advertisement

Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: antibacterial, antioxidant and cytotoxic activities

  • Devaraj Bharathi
  • V. Bhuvaneshwari
Article
  • 35 Downloads

Abstract

The present study reports an eco-friendly green synthesis of zinc oxide nanoparticles (ZnO NPs) using the bioflavonoid rutin. The synthesized ZnO NPs were characterized by UV–visible spectroscopy, XRD, FE-SEM, EDX, FTIR and zeta potential analyses. FE-SEM image showed that the synthesized ZnO NPs were rod shaped. FTIR spectral studies confirmed the role of bioflavonoid rutin for the reduction, capping and synthesis of ZnO NPs. The green synthesized ZnO NPs showed significant antibacterial activity against both Gram-positive (B. subtilis and S. aureus) and Gram-negative (K. pneumoniae and E. coli) bacterial pathogens. However, the synthesized ZnO NPs were more effective against Gram-negative bacteria compared to Gram-positive bacteria. The in vitro antioxidant ability of ZnO NPs was investigated spectrophotometrically using DPPH and H2O2 assay. The percentage of antioxidant activity increased with increasing concentration of ZnO NPs. Furthermore, synthesized ZnO NPs showed effectiveness in inhibiting the human MCF-7 breast cancer cells. In conclusion, the synthesized ZnO NPs using bioflavonoid rutin might be used as a strong biocidal and antioxidant agent in biomedical and pharmaceutical industries.

Keywords

Rutin Zinc oxide nanoparticles Antibacterial agents Antioxidant activity Cytotoxic activity 

Notes

Acknowledgements

The authors like to thank Department of Science and Technology (DST-FIST) (Grant No. DST-FIST/120/2012), India for providing the fund for establishing laboratory facilities to the Department of Biotechnology, Kongunadu Arts and Science College and we acknowledge the South Indian Textile Research Association and Research (SITRA), and Department of Nanoscience and Nanotechnology, Bharathiar University, Coimbatore for extending their material characterization facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Sabir, M. Arshad, S.K. Chaudhari, Sci. World J. 2014, 1 (2014)CrossRefGoogle Scholar
  2. 2.
    S.P. Rajendran, K. Sengodan, J. Nanosci. 2017, 1 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Jamdagni, P. Khatri, J.S. Rana, J. King Saud Univ. Sci. 30, 168 (2016)CrossRefGoogle Scholar
  4. 4.
    A.A. Jahagirdar, N. Dhananjaya, D.L. Monika, C.R. Kesavulu, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, J.L. Rao, R.P.S. Chakradhar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 104, 512 (2013)CrossRefGoogle Scholar
  5. 5.
    R.K. Sharma, R. Ghose, Ceram. Int. 41, 967 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Ristić, S. Musić, M. Ivanda, S. Popović, J. Alloys Compd. 397, L1 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Hasanpoor, M. Aliofkhazraei, H. Delavari, Procedia Mater. Sci. 11, 320 (2015)CrossRefGoogle Scholar
  8. 8.
    A.E. Kandjani, M.F. Tabriz, B. Pourabbas, Mater. Res. Bull. 43, 645 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Baskoutas, P. Giabouranis, S.N. Yannopoulos, V. Dracopoulos, L. Toth, A. Chrissanthopoulos, N. Bouropoulos, Thin Solid Films 515, 8461 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Wei, Y. Wu, N. Lun, C. Hu, Mater. Sci. Eng. A 393, 80 (2005)CrossRefGoogle Scholar
  11. 11.
    S.M. Pourmortazavi, Z. Marashianpour, M.S. Karimi, M. Mohammad-Zadeh, J. Mol. Struct. 1099, 232 (2015)CrossRefGoogle Scholar
  12. 12.
    T. Karnan, S.A.S. Selvakumar, J. Mol. Struct. 1125, 358 (2016)CrossRefGoogle Scholar
  13. 13.
    O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, P.A. Luque, J. Mol. Struct. 1147, 1 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Dobrucka, J. Długaszewska, Saudi J. Biol. Sci. 23, 517 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 74, 417 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Krishnamoorthy, J. Athinarayanan, V.S. Periasamy, A.R. Adisa, M.A. Al-Shuniaber, M.A. Gassem, A.A. Alshatwi, Microb. Pathog. 120, 85 (2018)CrossRefGoogle Scholar
  17. 17.
    K. Lingaraju, H.R. Naika, K. Manjunath, R.B. Basavaraj, H. Nagabhushana, G. Nagaraju, D. Suresh, Appl. Nanosci. 6, 703 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Ali, R. Irshad, B. Li, K. Tahir, A. Ahmad, M. Shakeel, N.U. Khan, Z.U.H. Khan, J. Photochem. Photobiol. B 183, 349 (2018)CrossRefGoogle Scholar
  19. 19.
    N. Sisubalan, V.S. Ramkumar, A. Pugazhendhi, C. Karthikeyan, K. Indira, K. Gopinath, A.S.H. Hameed, M.H.G. Basha, Environ. Sci. Pollut. Res. Int. 25, 10482 (2017)CrossRefGoogle Scholar
  20. 20.
    M.I. Azevedo, A.F. Pereira, R.B. Nogueira, F.B. Rolim, G.A. Brito, D.V.T. Wong, R.C. Lima-Júnior, R. de Albuquerque Ribeiro, M.L. Vale, M. Pain. 9, 53 (2013)Google Scholar
  21. 21.
    G. Di Carlo, N. Mascolo, A.A. Izzo, F. Capasso, Life Sci. 65, 337 (1999)CrossRefGoogle Scholar
  22. 22.
    S. Kreft, M. Knapp, I. Kreft, J. Agric. Food Chem. 47, 4649 (1999)CrossRefGoogle Scholar
  23. 23.
    F. Wu, J. Chen, L.M. Fan, K. Liu, N. Zhang, S.W. Li, H. Zhu, H.C. Gao, Exp. Ther. Med. 14, 27 (2017)Google Scholar
  24. 24.
    K. Saravanakumar, R. Chelliah, S.R. Ramakrishnan, K. Kathiresan, D.H. Oh, M.H. Wang, Microb. Pathog. 115, 338 (2018)CrossRefGoogle Scholar
  25. 25.
    M.S. Abdel-Aziz, M.S. Shaheen, A.A. El-Nekeety, M.A. Abdel-Wahhab, J. Saudi Chem. Soc. 18, 356 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Anbukkarasi, P.A. Thomas, J.R. Sheu, P. Geraldine, Biomed. Pharmacother. 91, 467 (2017)CrossRefGoogle Scholar
  27. 27.
    D. Bharathi, M.D. Josebin, S. Vasantharaj, V. Bhuvaneshwari, J. Nanostruct. Chem. 8, 83 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Mugade, M. Patole, V. Pokharkar, Biomed. Pharmacother. 91, 95 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Nosrati, M. Adibtabar, A. Sharafi, H. Danafar, M. HamidrezaKheiri, Drug Dev. Ind. Pharm. 44, 1377 (2018)CrossRefGoogle Scholar
  30. 30.
    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, M.P. Thangaraj, J. Photochem. Photobiol. B 174, 306 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, B. Vaseeharan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 886 (2015)CrossRefGoogle Scholar
  32. 32.
    D. Sharma, M.I. Sabela, S. Kanchi, P.S. Mdluli, G. Singh, T.A. Stenström, K. Bisetty, J. Photochem. Photobiol. B 162, 199 (2016)CrossRefGoogle Scholar
  33. 33.
    S.K. Chaudhuri, L. Malodia, Appl. Nanosci. 7, 501 (2017)CrossRefGoogle Scholar
  34. 34.
    S.A. Ansari, S.G. Ansari, H. Foaud, M.H. Cho, New J. Chem. 41, 9314 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Salehiabar, H. Nosrati, S. Davaran, H. Danafar, H.K. Manjili, Drug Res. 68, 280 (2018)CrossRefGoogle Scholar
  36. 36.
    J. Sujatha, S. Asokan, S. Rajeshkumar, J. Microbiol. Biotechnol. Food Sci. 7, 348 (2018)CrossRefGoogle Scholar
  37. 37.
    P. Vanathi, P. Rajiv, S. Narendhran, S. Rajeshwari, P.K. Rahman, R. Venckatesh, Mater. Lett. 134, 13 (2014)CrossRefGoogle Scholar
  38. 38.
    K. Steffy, N. Shanthi, A.S. Maroky, S. Selvakumar, J. Adv. Res. 9, 69 (2018)CrossRefGoogle Scholar
  39. 39.
    R. Mukhopadhyay, J. Kazi, M.C. Debnath, Biomed. Pharmacother. 97, 1373 (2018)CrossRefGoogle Scholar
  40. 40.
    D. Vaidehi, V. Bhuvaneshwari, D. Bharathi, B.P. Sheetal, Mater. Res. Express 5, 085403 (2018)CrossRefGoogle Scholar
  41. 41.
    R. Marsalek, APCBEE Procedia 9, 13 (2014)CrossRefGoogle Scholar
  42. 42.
    K. Vimala, S. Sundarraj, M. Paulpandi, S. Vengatesan, S. Kannan, Process Biochem. 49, 160 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, M. Shobiya, Biomed. Pharmacother. 84, 1213 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Sathiyavimal, S. Vasantharaj, D. Bharathi, S. Mythili, E. Manikandan, S.S. Kumar, A. Pugazhendhi, J. Photochem. Photobiol. B 188, 126 (2018)CrossRefGoogle Scholar
  45. 45.
    D. Bharathi, S. Vasantharaj, V. Bhuvaneshwari, Mater. Res. Express 5, 055404 (2018)CrossRefGoogle Scholar
  46. 46.
    T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Mater. Sci. Semicond. Proc. 32, 55 (2015)CrossRefGoogle Scholar
  47. 47.
    A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R. Venketesan, Nanomed. Nanotechnol. 6, 103 (2010)CrossRefGoogle Scholar
  48. 48.
    K. Prabu, A. Rajasekaran, D. Bharathi, S. Ramalakshmi, J. King Saud Univ. Sci. (2018).  https://doi.org/10.1016/j.jksus.2018.04.025 Google Scholar
  49. 49.
    D. Bharathi, V. Bhuvaneshwari, BioNanoScience. (2018).  https://doi.org/10.1007/s12668-018-0577-5 Google Scholar
  50. 50.
    D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Bioprocess Biosyst. Eng. 40, 943 (2017)CrossRefGoogle Scholar
  51. 51.
    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M.A.R. Kalanjiam, K. Murugan, G. Benelli, Microb. Pathog. 104, 268 (2017)CrossRefGoogle Scholar
  52. 52.
    A. Boroumand Moghaddam, M. Moniri, S. Azizi, R. Abdul Rahim, A. Bin Ariff, M. Navaderi, R. Mohamad, Genes 8, 281 (2017)CrossRefGoogle Scholar
  53. 53.
    H. Nosrati, A. Mojtahedi, H. Danafar, H. KheiriManjili, J. Biomed. Mater. Res. A 106, 1646 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyKongunadu Arts and Science CollegeCoimbatoreIndia

Personalised recommendations