Advertisement

Effects of hydrothermal aging at high and low temperatures on the selective catalytic reduction of NOx with NH3 over Cu/SAPO-34

  • Jin Cheng
  • Shuai Han
  • Qing YeEmail author
  • Shuiyuan Cheng
  • Tianfang Kang
  • Hongxing DaiEmail author
Article
  • 38 Downloads

Abstract

Effects of hydrothermal aging at 80 and 850 °C on catalytic performance and stability of Cu/SAPO-34 catalysts with different Cu loadings were examined, and their catalytic activities were investigated for the selective catalytic reduction (SCR) of NOx with ammonia. Over the fresh catalysts, the NH3-SCR activity increased with the loading of copper in the low-temperature range and decreased in the high-temperature range. Both of the isolated Cu2+ ions and CuO synergistically influenced the SCR behavior of the Cu/SAPO-34 catalysts, which gave rise to the distinct trends of catalytic activity in the two temperature ranges. Structural damage and dealumination, however, were observed in the aged samples, leading to a severely decreased amount in acid site and a loss in crystallinity. After hydrothermal aging at 850 °C, there was some aggregation in Cu species and the redox capacity of the 0.8Cu/SAPO-34-850 catalyst was improved. It is found that the isolated Cu2+ ions were transformed into the Cu–AlOx species after hydrothermal aging at 80 °C. These results clearly demonstrate that the change in the state of copper species and the damage in structure led to different catalytic activity of the sample.

Keywords

SAPO-34 Supported copper catalyst Selective catalytic reduction NOx removal Hydrothermal aging 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21277008 and 20777005), the National Key Research and Development Program of China (Grant No. 2017YFC0209905), and the Natural Science Foundation of Beijing (Grant No. 8082008). We also thank Prof. Ralph T. Yang (University of Michigan) for his helpful discussion and encouragement.

References

  1. 1.
    F. Liu, Y. Yu, H. He, Chem. Commun. 50, 8445 (2014)CrossRefGoogle Scholar
  2. 2.
    U. Deka, A. Juhin, E.A. Eilertsen, H. Emerich, M.A. Green, S.T. Korhonen, B.M. Weckhuysen, A.M. Beale, J. Phys. Chem. C 116, 4809 (2012)CrossRefGoogle Scholar
  3. 3.
    Z. Ma, H. Yang, F. Liu, X. Zhang, Appl. Catal. A 467, 450 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Bendrich, A. Scheuer, R.E. Hayes, M. Votsmeier, Appl. Catal. B 222, 76 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Xiang, P. Wu, Y. Cao, L. Cao, Q. Wang, S. Xu, P. Tian, Z. Liu, Chin. J. Catal. 38, 918 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Wang, H. Zhao, G. Haller, Y. Li, Appl. Catal. B 202, 346 (2017)CrossRefGoogle Scholar
  7. 7.
    S.S.R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A.D. Jensen, R. Fehrmann, Appl. Catal. B 183, 282 (2016)CrossRefGoogle Scholar
  8. 8.
    Z. Liu, S. Zhang, J. Li, J. Zhu, L. Ma, Appl. Catal. B 158–159, 11 (2014)CrossRefGoogle Scholar
  9. 9.
    B.M. Abu-Zied, W. Schwieger, A. Unger, Appl. Catal. B 84, 277 (2008)CrossRefGoogle Scholar
  10. 10.
    K. Góra-Marek, K. Brylewska, K.A. Tarach, M. Rutkowska, M. Jabłońska, M. Choi, L. Chmielarz, Appl. Catal. B 179, 589 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Han, Q. Ye, S. Cheng, T. Kang, H. Dai, Catal. Sci. Technol. 7, 703 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Xue, X. Wang, G. Qi, J. Wang, M. Shen, W. Li, J. Catal. 297, 56 (2013)CrossRefGoogle Scholar
  13. 13.
    D.W. Fickel, E. D’Addio, J.A. Lauterbach, R.F. Lobo, Appl. Catal. B 102, 441 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Wang, Y. Jangjou, Y. Liu, M.K. Sharma, J. Luo, J. Li, K. Kamasamudram, W.S. Epling, Appl. Catal. B 165, 438 (2015)CrossRefGoogle Scholar
  15. 15.
    C. Niu, X. Shi, F. Liu, K. Liu, L. Xie, Y. You, H. He, Chem. Eng. J. 294, 254 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Yu, M. Xu, Y. Huang, J. Wang, J. Wang, L. Lv, G. Qi, W. Li, M. Shen, Appl. Catal. B 204, 525 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Wang, T. Yu, X. Wang, G. Qi, J. Xue, M. Shen, W. Li, Appl. Catal. B 127, 137 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Leistner, F. Brüsewitz, K. Wijayanti, A. Kumar, K. Kamasamudram, L. Olsson, Energies 10, 489 (2017)CrossRefGoogle Scholar
  19. 19.
    D. Wang, L. Zhang, J. Li, K. Kamasamudram, W.S. Epling, Catal. Today 231, 64 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B. Su, Z. Liu, Micropor. Mesopor. Mater. 116, 684 (2008)CrossRefGoogle Scholar
  21. 21.
    X. Liu, X. Wu, D. Weng, Z. Si, R. Ran, Catal. Today 281, 596 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Wang, W. Li, G. Qi, D. Weng, J. Catal. 289, 21 (2012)CrossRefGoogle Scholar
  23. 23.
    L. Pang, C. Fan, L. Shao, K. Song, J. Yi, X. Cai, J. Wang, M. Kang, T. Li, Chem. Eng. J. 253, 394 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Han, J. Cheng, C. Zheng, Q. Ye, S. Cheng, T. Kang, H. Dai, Appl. Surf. Sci. 419, 382 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, I. Nam, B.K. Cho, J. Catal. 311, 447 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Cao, L. Lan, X. Feng, Z. Yang, S. Zou, H. Xu, Z. Li, M. Gong, Y. Chen, Catal. Sci. Technol. 5, 4511 (2015)Google Scholar
  27. 27.
    B. Chen, R. Xu, R. Zhang, N. Liu, Environ. Sci. Technol. 48, 13909 (2014)CrossRefGoogle Scholar
  28. 28.
    F. Gao, E.D. Walter, E.M. Karp, J. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi, C.H.F. Peden, J. Catal. 300, 20 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Zhu, J.H. Kwak, C.H.F. Peden, J. Szanyi, Catal. Today 205, 16 (2013)CrossRefGoogle Scholar
  30. 30.
    W. Su, Z. Li, Y. Peng, J. Li, Phys. Chem. Chem. Phys. 17, 29142 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Wang, Z. Peng, H. Qiao, L. Han, W. Bao, L. Chang, G. Feng, W. Liu, RSC Adv. 4, 42403 (2014)CrossRefGoogle Scholar
  32. 32.
    J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee, C.H.F. Peden, J. Catal. 287, 203 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Song, Y. Wang, E.D. Walter, N.M. Washton, D. Mei, L. Kovarik, M.H. Engelhard, S. Prodinger, Y. Wang, C.H.F. Peden, F. Gao, ACS Catal. 7, 8214 (2017)CrossRefGoogle Scholar
  34. 34.
    T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, Appl. Surf. Sci. 255, 2730 (2008)CrossRefGoogle Scholar
  35. 35.
    Y. Cao, S. Zou, L. Lan, Z. Yang, H. Xu, T. Lin, M. Gong, Y. Chen, J. Mol. Catal. A 398, 304 (2015)CrossRefGoogle Scholar
  36. 36.
    J.H. Lee, Y.J. Kim, T. Ryu, P.S. Kim, C.H. Kim, S.B. Hong, Appl. Catal. B 200, 428 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Ma, Y. Cheng, G. Cavataio, R.W. Mccabe, L. Fu, J. Li, Chem. Eng. J. 225, 323 (2013)CrossRefGoogle Scholar
  38. 38.
    J.Y. Yan, G.D. Lei, W. Sachtler, H.H. Kung, J. Catal. 161, 43 (1996)CrossRefGoogle Scholar
  39. 39.
    T. Zhang, F. Qiu, J. Li, Appl. Catal. B 195, 48 (2016)CrossRefGoogle Scholar
  40. 40.
    F. Gao, E.D. Walter, N.M. Washton, J. Szanyi, C.H.F. Peden, ACS Catal. 3, 2083 (2013)CrossRefGoogle Scholar
  41. 41.
    S.J. Schmieg, S.H. Oh, C.H. Kim, D.B. Brown, J.H. Lee, C.H.F. Peden, D.H. Kim, Catal. Today 184, 252 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Bulanek, B. Wichterlova, Z. Sobalik, J. Tichy, Appl. Catal. B 31, 13 (2001)CrossRefGoogle Scholar
  43. 43.
    M.F. Ribeiro, J.M. Silva, S. Brimaud, A.P. Antunes, E.R. Silva, A. Fernandes, P. Magnoux, D.M. Murphy, Appl. Catal. B 70, 384 (2007)CrossRefGoogle Scholar
  44. 44.
    J. Wang, D. Fan, T. Yu, J. Wang, T. Hao, X. Hu, M. Shen, W. Li, J. Catal. 322, 84 (2015)CrossRefGoogle Scholar
  45. 45.
    F. Gao, E.D. Walter, M. Kollar, Y. Wang, J. Szanyi, C.H.F. Peden, J. Catal. 319, 1 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingChina
  2. 2.Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, and Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations