Advertisement

Reviews in Fish Biology and Fisheries

, Volume 29, Issue 4, pp 951–964 | Cite as

Socio-economic development, scientific research, and exploitation explain differences in conservation status of marine and freshwater chondrichthyans among countries

  • Luis O. LuciforaEmail author
  • Santiago A. Barbini
  • Pablo A. Scarabotti
  • David E. Sabadin
Original Research

Abstract

Sharks, skates, rays and chimaeras (chondrichthyans) are of high conservation concern; especially obligate freshwater chondrichthyans, given their restricted ranges, proximity to humans, and threatened habitat. The biological traits that increase chondrichthyan susceptibility to extinction are well known. Less attention has been put on the human determinants of chondrichthyan conservation status. Socio-economic development, scientific research, and exploitation affect natural resource management and conservation. We assessed the relationship between these factors and chondrichthyan conservation. We ran generalized linear models with number of Threatened (THR), Least Concern (LC), and Data Deficient chondrichthyans as dependent variables, and indicators of socio-economic development (governance, human security, human development, and corruption indices), scientific research (number of papers on chondrichthyans), and exploitation (total, industrial, and foreign catch of chondrichthyans), as independent variables. Human density instead of exploitation was a predictor for obligate freshwater chondrichthyans. Socio-economic development (regardless of the index used) and scientific research were associated to desirable conservation status, such as low THR and high LC, for both marine and obligate freshwater species. Exploitation and human density (for obligate freshwater chondrichthyans) were associated to negative conservation status, i.e. high THR and low LC. Current human density projections translated into a 69% decrease in obligate freshwater chondrichthyans LC by 2050. Development produces desirable conservation status for chondrichthyans, but resource overconsumption must be reduced. Scientific research appears to assist sustainable use of chondrichthyan resources, and should be promoted in developing countries. Assessment and conservation of obligate freshwater chondrichthyans, and freshwater biota in general, must be pursued with urgency.

Keywords

Sharks Skates Rays Chimaeras Freshwater stingrays IUCN Red List 

Notes

Acknowledgements

We sincerely thank two anonymous reviewers whose comments greatly improved this work. This research was supported by funds from CONICET (PIP 11220120100054) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-660).

Supplementary material

11160_2019_9584_MOESM1_ESM.pdf (162 kb)
Supplementary material 1 (PDF 161 kb)
11160_2019_9584_MOESM2_ESM.pdf (42 kb)
Supplementary material 2 (PDF 41 kb)
11160_2019_9584_MOESM3_ESM.pdf (34 kb)
Supplementary material 3 (PDF 34 kb)
11160_2019_9584_MOESM4_ESM.pdf (17 kb)
Supplementary material 4 (PDF 17 kb)

References

  1. Abell R, Allan JD, Lehner B (2007) Unlocking the potential of protected areas for freshwaters. Biol Conserv 134:48–63Google Scholar
  2. Abell R, Blanch S, Revenga C, Thieme M (2009) Conservation of aquatic ecosystems. In: Likens GE (ed) River ecosystem ecology: a global perspective. Academic Press, San Diego, pp 280–289Google Scholar
  3. Abell R, Thieme M, Lehner B (2011) Indicators for assessing threats to freshwater biodiversity from humans and human-shaped landscapes. In: Cincotta RP, Gorenflo LJ (eds) Human population: its influences on biological diversity. Springer, Berlin, pp 103–124Google Scholar
  4. Abers RN, de Oliveira MS, Pereira AK (2017) Inclusive development and the asymmetric state: big projects and local communities in the Brazilian Amazon. J Dev Stud 53:857–872Google Scholar
  5. Able KW (2016) Natural history: an approach whose time has come, passed, and needs to be resurrected. ICES J Mar Sci 73:2150–2155Google Scholar
  6. Agnew DJ, Pearce J, Pramod G, Peatman T, Watson R, Beddington JR, Pitcher TJ (2009) Estimating the worldwide extent of illegal fishing. PLoS ONE 4:e4570PubMedPubMedCentralGoogle Scholar
  7. Agostinho AA, Thomaz SM, Gomes LC (2004) Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol Hydrobiol 4:255–268Google Scholar
  8. Allan JD, Abell R, Hogan Z, Revenga C, Taylor BW, Welcomme RL, Winemiller K (2005) Overfishing of inland waters. Bioscience 55:1041–1051Google Scholar
  9. Angelescu V, Sánchez RP (1995) A century of oceanographic and fisheries exploration on the continental shelf off Argentina. Helgol Meeresunters 49:467–487Google Scholar
  10. Baran E, Myschowoda C (2009) Dams and fisheries in the Mekong Basin. Aquat Ecosyst Health Manag 12:227–234Google Scholar
  11. Barbosa-Filho MLV, Schiavetti A, Alarcon DT, Costa-Neto EM (2014) “Shark is the man!”: ethnoknowledge of Brazil’s South Bahia fishermen regarding shark behaviors. J Ethnobiol Ethnomed 10:54PubMedPubMedCentralGoogle Scholar
  12. Baumann M, Gasparri I, Piquer-Rodríguez M, Gavier Pizarro G, Griffiths P, Hostert P, Kuemmerle T (2017) Carbon emissions from agricultural expansion and intensification in the Chaco. Global Change Biol 23:1902–1916Google Scholar
  13. Bennett NJ, Roth R, Klain SC, Chan K, Christie P, Clark DA, Cullman G, Curran D, Durbin TJ, Epstein G, Greenberg A, Nelson MP, Sandlos J, Stedman R, Teel TL, Thomas R, Veríssimo D, Wyborn C (2017) Conservation social science: understanding and integrating human dimensions to improve conservation. Biol Conserv 205:93–108Google Scholar
  14. Buller LS, Bayma-Silva G, Zanetti MR, Ortega E, de Moraes A, Goulart T, Bergier I (2016) Historical land-use changes in São Gabriel do Oeste at the upper Taquari River Basin. In: Bergier I, Assine ML (eds) Dynamics of the Pantanal wetland in South America. Springer, Cham, pp 191–208Google Scholar
  15. Burger JR, Allen CD, Brown JH, Burnside WR, Davidson AD, Fristoe TS, Hamilton MJ, Mercado-Silva N, Nekola JC, Okie JG, Zuo W (2012) The macroecology of sustainability. PLoS Biol 10:e1001345PubMedPubMedCentralGoogle Scholar
  16. Carrete Vega G, Wiens JJ (2012) Why are there so few fish in the sea? Proc R Soc B 279:2323–2329PubMedGoogle Scholar
  17. Castello L, Hess LL, Thapa R, McGrath D, Arantes CC, Renó VF, Isaac VJ (2018) Fishery yields vary with land cover on the Amazon River floodplain. Fish Fish 19:431–440Google Scholar
  18. Compagno LJV, Cook SFD (1995) The exploitation and conservation of freshwater elasmobranchs: status of taxa and prospects for the future. J Aquaricult Aquat Sci 7:62–91Google Scholar
  19. Conti JP (2006) The ten billion dollar dam. IET Power Eng 20:23–26Google Scholar
  20. Cortés E (2002) Incorporating uncertatinty into demographic modelling: application to shark populations and their conservation. Conserv Biol 16:1048–1062Google Scholar
  21. Davidson LNK, Krawchuk MA, Dulvy NK (2016) Why have global shark and ray landings declined: improved management or overfishing? Fish Fish 17:438–458Google Scholar
  22. de Araújo MLG, Charvet-Almeida P, Almeida MP, Pereira H (2004) Freshwater stingrays (Potamotrygonidae): status, conservation and management challenges. CITES AC 20 Inf 8:1–6Google Scholar
  23. Dickman AJ, Hinks AE, Macdonald EA, Burnham D, Macdonald DW (2015) Priorities for global felid conservation. Conserv Biol 29:854–864PubMedGoogle Scholar
  24. Dudgeon D (2012) Threats to freshwater biodiversity globally and in the Indo-Burma Biodiversity Hotspot. In: Allen DJ, Smith KG, Darwall WRT (eds) The status and distribution of freshwater biodiversity in Indo-Burma. IUCN, Cambridge, pp 1–28Google Scholar
  25. Dulvy NK, Simpfendorfer CA, Davidson LNK, Fordham SV, Bräutigam A, Sant G, Welch DJ (2017) Challenges and priorities in shark and ray conservation. Curr Biol 27:R565–R572PubMedGoogle Scholar
  26. Eklund J, Arponen A, Visconti P, Cabeza M (2011) Governance factors in the identification of global conservation priorities for mammals. Philos Trans R Soc B 366:2661–2669Google Scholar
  27. Eriksson H, Clarke S (2015) Chinese market responses to overexploitation of sharks and sea cucumbers. Biol Conserv 184:163–173Google Scholar
  28. Etchegoyen MA, Ronco AE, Almada P, Abelando M, Marino DJ (2017) Occurrence and fate of pesticides in the Argentine stretch of the Paraguay–Paraná basin. Environ Monit Assess 189:63PubMedGoogle Scholar
  29. Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman & Hall/CRC Press, Boca ratonGoogle Scholar
  30. Fearnside PM (2017) Belo Monte: actors and arguments in the struggle over Brazil’s most controversial Amazonian dam. Die Erde 148:14–26Google Scholar
  31. Fernandes GW, Vale MM, Overbeck GE, Bustamante MMC, Grelle CEV, Bergallo HG, Magnusson WE, Akama A, Alves SS, Amorim A, Araújo J, Barros CF, Bravo F, Carim MJV, Cerqueira R, Collevatti RG, Colli GR, da Cunha CN, D’Andrea PS, Dianese JC, Diniz S, Estrela PC, Fernandes MRM, Fontana CS, Giacomin LL, Gusmão LFP, Juncá FA, Lins-e-Silva ACB, Lopes CRAS, Lorini ML, de Queiroz LP, Malabarba LR, Marimon BS, Marimon Junior BH, Marques MCM, Martinelli BM, Martins MB, de Medeiros HF, Menin M, de Morais PB, Muniz FH, Neckel-Oliveira S, de Oliveira JA, Oliveira RP, Pedroni F, Penha J, Podgaiski LR, Rodrigues DJ, Scariot A, Silveira LF, Silveira M, Tomas WM, Vital MJS, Pillar VD (2017) Dismantling Brazil’s science threatens global biodiversity heritage. Perspect Ecol Conserv 15:239–243Google Scholar
  32. Ferretti F, Myers RA, Serena F, Lotze HK (2008) Loss of large predatory sharks from the Mediterranean Sea. Conserv Biol 22:952–964PubMedGoogle Scholar
  33. Field IC, Meekan MG, Buckworth RC, Bradshaw CJA (2009) Susceptibility of sharks, rays and chimaeras to global extinction. Adv Mar Biol 56:275–363PubMedGoogle Scholar
  34. Freudenberger L, Hobson P, Schluck M, Kreft S, Vohland K, Sommer H, Reichle S, Nowicki C, Barthlott W, Ibisch PL (2013) Nature conservation: priority-setting needs a global change. Biodivers Conserv 22:1255–1281Google Scholar
  35. Friedman K, Gabriel S, Abe O, Adnan Nuruddin A, Ali A, Bidin Raja Hassan R, Cadrin SX, Cornish A, De Meulenaer T, Dharmadi Fahmi, Huu Tuan Anh L, Kachelriess D, Kissol L Jr, Krajangdara T, Rahman Wahab A, Tanoue W, Tharith C, Torres F Jr, Wanchana W, Win S, Yokawa K, Ye Y (2018) Examining the impact of CITES listing of sharks and rays in Southeast Asian fisheries. Fish Fish 19:662–676Google Scholar
  36. García VB, Lucifora LO, Myers RA (2008) The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc R Soc B 275:83–89PubMedGoogle Scholar
  37. Garrone-Neto D, Haddad V Jr, Gadig OBF (2014) Record of ascending passage of potamotrygonid stingrays through navigation locks: implications for the management of non-native species in the Upper Paraná River basin, Southeastern Brazil. Manag Biol Invasion 5:113–119Google Scholar
  38. Grant MI, Kyne PM, Simpfendorfer CA, White WT, Chin A (2019) Categorising use patterns of non-marine environments by elasmobranchs and a review of their extinction risk. Rev Fish Biol Fish 29:689–710Google Scholar
  39. Hastings DA (2013) The Human Security Index: pursuing enriched characterization of development. Development 56:66–78Google Scholar
  40. He F, Bremerich V, Zarfl C, Geldmann J, Langhans SD, David JNW, Darwall W, Tockner K, Jähnig SC (2018) Freshwater megafauna diversity: patterns, status and threats. Divers Distrib 24:1395–1404Google Scholar
  41. Hisano M, Connolly SR, Robbins WD (2011) Population growth rates of reef sharks with and without fishing on the Great Barrier Reef: robust estimation with multiple models. PLoS ONE 6:e25028PubMedPubMedCentralGoogle Scholar
  42. Holmgren M, Schnitzer SA (2004) Science on the rise in developing countries. PLoS Biol 2:10–13Google Scholar
  43. Hermoso V (2017) Freshwater ecosystems could become the biggest losers of the Paris Agreement. Glob Change Biol 23(9):3433–3436Google Scholar
  44. Hutchings JA, Myers RA, García VB, Lucifora LO, Kuparinen A (2012) Life-history correlates of extinction risk and recovery potential. Ecol Appl 22:1061–1067PubMedGoogle Scholar
  45. Huveneers C, Ebert DA, Dudley SFJ (2015) The evolution of chondrichthyan research through a metadata analysis of dedicated international conferences between 1991 and 2014. Afr J Mar Sci 37:129–139Google Scholar
  46. Jahan S (2016) Human development report 2016. United Nations Development Programme, New YorkGoogle Scholar
  47. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19(2):101–108PubMedGoogle Scholar
  48. Kauffman D, Kraay A, Mastruzzi M (2010) The worldwide governance indicators: methodology and analytical issues. The World Bank Development Research Group Macroeconomics and Growth Team Policy Research Working Paper 5430Google Scholar
  49. Kornblihtt A (2017) Where science and nonsense collide. Nature 541:135PubMedGoogle Scholar
  50. Kottelat M, Baird IG, Kullander SO, Ng HH, Parenti LR, Rainboth WJ, Vidthayanon C (2012) The status and distribution of freshwater fishes of Indo-Burma. In: Allen DJ, Smith KG, Darwall WRT (eds) The status and distribution of freshwater biodiversity in Indo-Burma. IUCN, Cambridge, pp 38–65Google Scholar
  51. Lam VYY, Sadovy de Mitcheson Y (2011) The sharks of South East Asia—unknown, unmonitored and unmanaged. Fish Fish 12:51–74Google Scholar
  52. Latrubesse EM, Arima EY, Dunne T, Park E, Baker VR, d’Horta FM, Wight C, Wittmann F, Zuanon J, Baker PA, Ribas CC, Norgaard RB, Filizola N, Ansar A, Flyvbjerg B, Stevaux JC (2017) Damming the rivers of the Amazon basin. Nature 546:363–369PubMedGoogle Scholar
  53. Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486:109–112PubMedGoogle Scholar
  54. Lucifora LO, de Carvalho MR, Kyne PM, White WT (2015) Freshwater sharks and rays. Curr Biol 25:R965–R979Google Scholar
  55. Lucifora LO, Barbini SA, Llamazares Vegh S, Scarabotti PA, Vargas F, Solari A, Mabragaña E, Díaz de Astarloa JM (2016) Geographic distribution of the short-tailed river stingray (Potamotrygon brachyura): assessing habitat loss and fishing as threats to the world’s largest obligate freshwater elasmobranch. Mar Freshw Res 67:1463–1478Google Scholar
  56. Lucifora LO, Balboni L, Scarabotti PA, Alonso FA, Sabadin DE, Solari A, Vargas F, Barbini SA, Mabragaña E, Díaz de Astarloa JM (2017) Decline or stability of obligate freshwater elasmobranchs following high fishing pressure. Biol Conserv 210:293–298Google Scholar
  57. Martin SM, Lorenzen K, Arthur RI, Kaisone P, Souvannalangsy K (2011) Impacts of fishing by dewatering on fish assemblages of tropical floodplain wetlands: a matter of frequency and context. Biol Conserv 144:633–640Google Scholar
  58. Martin J-L, Maris V, Simberloff DS (2016) The need to respect nature and its limits challenges society and conservation science. Proc Natl Acad Sci USA 113:6105–6112PubMedGoogle Scholar
  59. Martins APB, Feitosa LM, Lessa RP, Almeida ZS, Heupel M, Silva WM, Tchaicka L, Nunes JLS (2018) Analysis of the supply chain and conservation status of sharks (Elasmobranchii: Superorder Selachimorpha) based on fisher knowledge. PLoS ONE 13:e0193969PubMedPubMedCentralGoogle Scholar
  60. McClanachan TR, Rankin PS (2016) Geography of conservation spending, biodiversity, and culture. Conserv Biol 30:1089–1101Google Scholar
  61. Mora C, Myers RA, Coll M, Libralato S, Pitcher TJ, Sumaila RU, Zeller D, Watson R, Gaston KJ, Worm B (2009) Management effectiveness of the world’s marine fisheries. PLoS Biol 7:e1000131PubMedPubMedCentralGoogle Scholar
  62. Mora C, Aburto-Oropeza O, Ayala Bocos A, Ayotte PM, Banks S, Bauman AG, Beger M, Bessudo S, Booth DJ, Brokovich E, Brooks A, Chabanet P, Cinner JE, Cortés J, Cruz-Motta JJ, Cupul Magaña A, DeMartini EE, Edgar GJ, Feary DA, Ferse SCA, Friedlander AM, Gaston KJ, Gough C, Graham NAJ, Green A, Guzman H, Hardt M, Kulbicki M, Letourneur Y, López Perez A, Loreau M, Loya Y, Martinez C, Mascareñas-Osorio I, Morove T, Nadon M-O, Nakamura Y, Paredes G, Polunin NVC, Pratchett MS, Reyes Bonilla H, Rivera F, Sala E, Sandin SA, Soler G, Stuart-Smith R, Tessier E, Tittensor DP, Tupper M, Usseglio P, Vigliola L, Wantiez L, Williams I, Wilson SK, Zapata FA (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606PubMedPubMedCentralGoogle Scholar
  63. Ngor PB, McCann KS, Grenouillet G, So N, McMeans BC, Fraser E, Lek S (2018) Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Sci Rep 8:8947PubMedPubMedCentralGoogle Scholar
  64. Perez JAA, Pereira BN, Pereira DA, Schroeder R (2013) Composition and diversity patterns of megafauna discards in the deep-water shrimp trawl fishery off Brazil. J Fish Biol 83:804–825PubMedGoogle Scholar
  65. Pitcher T, Kalikoski D, Pramod G, Short K (2009) Not honouring the code. Nature 457:658–659PubMedGoogle Scholar
  66. Reis V, Hermoso V, Hamilton SK, Ward D, Fluet-Chouinard E, Lehner B, Linke S (2017) A global assessment of inland wetland conservation status. Bioscience 67:523–533Google Scholar
  67. Rosa RS, Charvet-Almeida P, Quijada CCD (2010) Biology of the South American potamotrygonid stingrays. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II: biodiversity, adaptive physiology and conservation. CRC Press, Boca Raton, pp 241–281Google Scholar
  68. Selig ER, Longo C, Halpern BS, Best BD, Hardy D, Elfes CT, Scarborough C, Kleisner KM, Katona SK (2013) Assessing global marine biodiversity status within a coupled socio-ecological perspective. PLoS ONE 8:e60284PubMedPubMedCentralGoogle Scholar
  69. Shiffman DS, Hammerschlag N (2016) Preferred conservation policies of shark researchers. Conserv Biol 30:805–815PubMedGoogle Scholar
  70. Simpfendorfer CA, Dulvy NK (2017) Bright spots of sustainable shark fishing. Curr Biol 27:R83–R102Google Scholar
  71. Simpfendorfer CA, Heupel MR, White WT, Dulvy NK (2011) The importance of research and public opinion to conservation management of sharks and rays: a synthesis. Mar Freshw Res 62:518–527Google Scholar
  72. Smith SE, Au DW, Show C (1998) The intrinsic rebound potential of 26 species of Pacific sharks. Mar Freshw Res 49:663–678Google Scholar
  73. Sodhi NS (2008) Tropical biodiversity loss and people—a brief review. Basic Appl Ecol 9:93–99Google Scholar
  74. Stallings CD (2009) Fishery-independent data reveal negative effect of human population density on Caribbean predatory fish communities. PLoS ONE 4:e5333PubMedPubMedCentralGoogle Scholar
  75. Vitule JRS, Skóra F, Abilhoa V (2012) Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib 18:111–120Google Scholar
  76. Ward-Paige CA, Worm B (2017) Global evaluation of shark sanctuaries. Global Environ Change 47:174–189Google Scholar
  77. Ward-Paige CA, Mora C, Lotze HK, Pattengill-Semmens C, McClenachan L, Arias-Castro E, Myers RA (2010) Large-scale absence of sharks on reefs in the Greater-Caribbean: a footprint of human pressures. PLoS ONE 5:e11968PubMedPubMedCentralGoogle Scholar
  78. Ward-Paige CA, Davis B, Worm B (2013) Global population trends and human use patterns of Manta and Mobula rays. PLoS ONE 8:e74835PubMedPubMedCentralGoogle Scholar
  79. Whatmough S, Van Putten I, Chin A (2011) From hunters to nature observers: a record of 53 years of diver attitudes towards sharks and rays and marine protected areas. Mar Freshw Res 62:755–763Google Scholar
  80. Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny MLJ, Silvano RAM, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere M Jr, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Torrente Vilara G, Snoeks J, Ou C, Rainboth W, Pavanelli CS, Akama A, van Soesbergen A, Sáenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Nacional de LimnologíaUniversidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad de Santa FeArgentina
  2. 2.Biología de Peces, Instituto de Investigaciones Marinas y CosterasUniversidad Nacional de Mar del Plata, CONICETMar del PlataArgentina

Personalised recommendations