Advertisement

The key role of the Northern Mozambique Channel for Indian Ocean tropical tuna fisheries

  • Emmanuel ChassotEmail author
  • Nathalie Bodin
  • Fany Sardenne
  • David Obura
Reviews

Abstract

The Northern Mozambique Channel (NMC) is a tropical area of ~ 1 million km2 where pelagic fisheries supply proteins to more than 9 million people living in Comoros, Mayotte, and along the coasts of Mozambique, Tanzania and Madagascar. Although uncertain, statistics suggest that about 20,000 mt of tropical tuna and other pelagic fish are annually caught by artisanal fisheries in the area. The NMC is also a major seasonal fishing ground for high-seas fleets that export an annual average catch of more than 20,000 mt to tuna can and sashimi markets of high-income countries for a value estimated to be more than 100 million USD. The fisheries productivity of the NMC appears to be highly variable in relation to strong annual and seasonal variability in oceanographic conditions. Our review shows that the NMC is a key feeding area for tropical tunas and a major spawning area for skipjack tuna thanks to warm waters and strong mesoscale activity that results in the enrichment of surface waters and efficient energy transfers enabled by short food chains. Projections of climate models under future warming scenarios predict some strong changes in the oceanographic conditions of the NMC which has already experienced substantial warming over the last decades. Changes in the pelagic ecosystem of the NMC could have dramatic consequences on the coastal populations that are expected to increase towards 100 million people by 2100. Improving monitoring systems and collecting information on the socio-economics of coastal fisheries is crucial to assess the dependence of NMC populations on tuna resources and empower the countries to more involvement in the management of tuna stocks.

Keywords

Bigeye Fisheries management Mozambique Channel Skipjack Yellowfin 

Notes

Acknowledgements

We are grateful to all the people involved in the collection and management of the data used in the present study, in particular the staff of the IOTC Secretariat for their dedication to their work. Special thanks to Fabio Fiorellato, James Geehan, Lucia Pierre, and Dan Fu. Catch and effort data were extracted from the global tuna fisheries database initiated by Alain and Viceca Fonteneau and further developed and consolidated through a collaboration between FAO and IRD. We are grateful to the many persons involved in the Tuna Atlas project, in particular Paul Taconet, Julien Barde, Emmanuel Blondel, Aymen Charef and Marc Taconet. The database and services of the Tuna Atlas are currently hosted by the Institute of Information Science and Technologies (CNR-ISTI) and the work received funding from the European Union’s Horizon 2020 research and innovation programme under the BlueBRIDGE project (Grant Agreement No. 675680). Liam Campling provided information on international tuna prices (FFA Trade Bulletin). The tuna tagging data analysed in this publication were collected by the Regional Tuna Tagging Project of the Indian Ocean (RTTP-IO) funded under the 9th European Development Fund (9.ACP.RSA.005/006) of the European Union. The RTTP-IO was implemented by the Indian Ocean Commission under the technical supervision of the IOTC. We wish to acknowledge the contributions of the project staff and all the technicians, recovery officers and fishers that have been involved in the RTTP-IO. Reproduction and morphometric data were mostly collected through the project EMOTION funded by the French National Research agency (ANR 11 JSV7 007 01), the EU Data Collection Framework (Reg. 199/2008 and 665/2008), Fundación Centros Tecnológicos, Department of Agriculture, Fisheries and Food of the Basque Government, and the PEVASA fishing company. James Mbugua (CORDIO) provided assistance with NMC boundaries and Umair Shahid useful comments on an earlier version of the manuscript. Many thanks to Pierrick Penven for pointing out very useful references on the oceanographic features of the Northern Mozambique Channel and Simon Hoyle for discussions and advice on statistical models. Laurent Pinault provided information on fisheries agreements. We finally thank the two anonymous reviewers for their constructive comments that helped improve the manuscript. The present study was funded by a WWF grant as part of the Northern Mozambique Channel Initiative.

Supplementary material

11160_2019_9569_MOESM1_ESM.doc (982 kb)
Supplementary material 1 (DOC 983 kb)

References

  1. Backeberg BC, Penven P, Rouault M (2012) Impact of intensified Indian Ocean winds on mesoscale variability in the Agulhas system. Nat Clim Change.  https://doi.org/10.1038/nclimate1587 CrossRefGoogle Scholar
  2. Bakun A (2006) Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Sci Mar 70:S2CrossRefGoogle Scholar
  3. Barnes-Mauthe M, Oleson KLL, Zafindrasilivonona B (2013) The total economic value of small-scale fisheries with a characterization of post-landing trends: an application in Madagascar with global relevance. Fish Res 147:175–185.  https://doi.org/10.1016/j.fishres.2013.05.011 CrossRefGoogle Scholar
  4. Beckley LE, Leis JM (2000) Occurrence of tuna and mackerel larvae (Family: Scombridae) off the east coast of South Africa. Mar Freshw Res 51:777–782.  https://doi.org/10.1071/mf00044 CrossRefGoogle Scholar
  5. Béhagle N, du Buisson L, Josse E et al (2014) Mesoscale features and micronekton in the Mozambique Channel: an acoustic approach. Deep Sea Res Part II Top Stud Oceanogr 100:164–173.  https://doi.org/10.1016/j.dsr2.2013.10.024 CrossRefGoogle Scholar
  6. Bistoquet K, Marguerite M, Lucas T et al (2018) Development of the Fishery Satellite Account in the Seychelles. In: IOTC proceedings. IOTC, Victoria, p 7Google Scholar
  7. Block BA, Jonsen ID, Jorgensen SJ et al (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90.  https://doi.org/10.1038/nature10082 CrossRefPubMedGoogle Scholar
  8. Boehlert GW, Mundy BC (1994) Vertical and onshore-offshore distributional patterns of tuna larvae in relation to physical habitat features. Mar Ecol Prog Ser 107:1–13CrossRefGoogle Scholar
  9. Burkill PH, Mantoura RFC, Owens NJP (1993) Biogeochemical cycling in the northwestern Indian Ocean: a brief overview. Deep Sea Res Part II Top Stud Oceanogr 40:643–649.  https://doi.org/10.1016/0967-0645(93)90049-S CrossRefGoogle Scholar
  10. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032.  https://doi.org/10.1139/f85-127 CrossRefGoogle Scholar
  11. Castro JJ, Santiago JA, Santana-Ortega AT (2002) A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis. Rev Fish Biol Fish 11:255–277CrossRefGoogle Scholar
  12. Chassot E, Assan C, Soto M et al (2015) Statistics of the European Union and associated flags purse seine fishing fleet targeting tropical tunas in the Indian Ocean 1981–2014. In: IOTC proceedings. IOTC, Victoria, p 32Google Scholar
  13. Cofrepêche (2013) Résultats du suivi des impacts socio-économiques des dispositifs concentrateurs de poissons (DCP) ancrés sur les pêcheries côtières de la zone sud-ouest de l’océan Indien. Etude proposée au titre de la contribution française au projet des pêches du sud-ouest de l’océan Indien (SWIOFP)Google Scholar
  14. Collins C, Hermes JC, Reason CJC (2014) Mesoscale activity in the Comoros Basin from satellite altimetry and a high-resolution ocean circulation model. J Geophys Res Oceans 119:4745–4760.  https://doi.org/10.1002/2014JC010008 CrossRefGoogle Scholar
  15. Conand F, Richards WJ (1982) Distribution of tuna larvae between Madagascar and the Equator, Indian Ocean. Biol Oceanogr 1:321–336.  https://doi.org/10.1080/01965581.1982.10749446 CrossRefGoogle Scholar
  16. Dammannagoda ST, Hurwood DA, Mather PB (2008) Evidence for fine geographical scale heterogeneity in gene frequencies in yellowfin tuna (Thunnus albacares) from the north Indian Ocean around Sri Lanka. Fish Res 90:147–157.  https://doi.org/10.1016/j.fishres.2007.10.006 CrossRefGoogle Scholar
  17. Dammannagoda ST, Hurwood DA, Mather PB (2011) Genetic analysis reveals two stocks of skipjack tuna (Katsuwonus pelamis) in the northwestern Indian Ocean. Can J Fish Aquat Sci 68:210–223.  https://doi.org/10.1139/F10-136 CrossRefGoogle Scholar
  18. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510.  https://doi.org/10.1038/nrg3012 CrossRefPubMedGoogle Scholar
  19. Davies TK, Mees CC, Milner-Gulland EJ (2014) Modelling the spatial behaviour of a tropical tuna purse seine fleet. PLoS ONE 9:e114037.  https://doi.org/10.1371/journal.pone.0114037 CrossRefPubMedPubMedCentralGoogle Scholar
  20. de Ruijter WPM, Ridderinkhof H, Lutjeharms JRE et al (2002) Observations of the flow in the Mozambique Channel. Geophys Res Lett 29:140–141.  https://doi.org/10.1029/2001GL013714 CrossRefGoogle Scholar
  21. De Young C (2006) Review of the state of world marine capture fisheries management: Indian Ocean. FAO, RomeGoogle Scholar
  22. deCastro M, Sousa MC, Santos F et al (2016) How will Somali coastal upwelling evolve under future warming scenarios? Sci Rep 6:30137.  https://doi.org/10.1038/srep30137 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dewar H, Graham J (1994) Studies of tropical tuna swimming performance in a large water tunnel—kinematics. J Exp Biol 192:45–59PubMedGoogle Scholar
  24. Doherty B, Herfaut J, Le Manach F et al (2015) Reconstructing domestic marine fisheries in Mayotte from 1950–2010. In: Le Manach F, Pauly D (eds) Fisheries catch reconstructions in the Western Indian Ocean, 1950–2010. Fisheries Centre, University of British, Colombia, pp 53–65Google Scholar
  25. Donguy J-R, Piton B (1991) The Mozambique Channel revisited. Oceanol Acta 14:549–558Google Scholar
  26. Dortel E, Sardenne F, Le Croizier G et al (2012) A hierarchical Bayesian integrated model incorporating direct ageing, mark-recapture and length-frequency data for yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) of the Indian Ocean. In: IOTC proceedings. IOTC, Grand Baie, p 20Google Scholar
  27. Dortel E, Sardenne F, Bousquet N et al (2015) An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna. Fish Res 163:69–84.  https://doi.org/10.1016/j.fishres.2014.07.006 CrossRefGoogle Scholar
  28. Druon J-N, Chassot E, Murua H, Lopez J (2017) Skipjack tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans. Front Mar Sci.  https://doi.org/10.3389/fmars.2017.00315 CrossRefGoogle Scholar
  29. Dueri S, Maury O (2010) Application of the APECOSM-E model to the skipjack tuna (Katsuwonus pelamis) fisheries of the Indian Ocean. In: IOTC proceedings. IOTC, Victoria, p 36Google Scholar
  30. Dueri S, Bopp L, Maury O (2014) Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Glob Change Biol 20:742–753.  https://doi.org/10.1111/gcb.12460 CrossRefGoogle Scholar
  31. Duffy LM, Kuhnert PM, Pethybridge HR et al (2017) Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep Sea Res Part II Top Stud Oceanogr 140:55–73.  https://doi.org/10.1016/j.dsr2.2017.03.003 CrossRefGoogle Scholar
  32. Ely B, Viñas J, Bremer JRA et al (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19.  https://doi.org/10.1186/1471-2148-5-19 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Erauskin-Extramiana M, Arrizabalaga H, Hobday AJ et al (2019) Large-scale distribution of tuna species in a warming ocean. Glob Change Biol.  https://doi.org/10.1111/gcb.14630 CrossRefGoogle Scholar
  34. Eveson JP, Million J, Sardenne F, Le Croizier G (2015) Estimating growth of tropical tunas in the Indian Ocean using tag-recapture data and otolith-based age estimates. Fish Res 163:58–68.  https://doi.org/10.1016/j.fishres.2014.05.016 CrossRefGoogle Scholar
  35. Fiorellato F, Geehan J, Pierre L (2018) Report on IOTC data collection and statistics. In: IOTC proceedings. IOTC, Victoria p 71Google Scholar
  36. Fonteneau A, Hallier J-P (2015) Fifty years of dart tag recoveries for tropical tuna: a global comparison of results for the western Pacific, eastern Pacific, Atlantic, and Indian Oceans. Fish Res 163:7–22.  https://doi.org/10.1016/j.fishres.2014.03.022 CrossRefGoogle Scholar
  37. Fonteneau A, Lucas V, Tewkai E et al (2008) Meso-scale exploitation of a major tuna concentration in the Indian Ocean. Aquat Living Resour 21:109–121.   https://doi.org/10.1051/alr:2008028 CrossRefGoogle Scholar
  38. Fourmanoir P (1954) Ichthyologie et pêche aux Comores. Mém Inst Sci Madagascar Série Biol Anim 9:187–239Google Scholar
  39. Fréon P, Dagorn L (2000) Review of fish associative behaviour: toward a generalisation of the meeting point hypothesis. Rev Fish Biol Fish 10:183–207.  https://doi.org/10.1023/A:1016666108540 CrossRefGoogle Scholar
  40. Fu D, Fiorellato F (2017) Indian Ocean skipjack tuna stock assessment 1950–2016 (Stock Synthesis). In: IOTC proceedings. Victoria, p 85Google Scholar
  41. Gagern A, van den Bergh J (2013) A critical review of fishing agreements with tropical developing countries. Mar Policy 38:375–386.  https://doi.org/10.1016/j.marpol.2012.06.016 CrossRefGoogle Scholar
  42. Galland G, Rogers A, Nickson A (2016) Netting billions: a global valuation of tuna. The PEW Charitable Trusts, Washington, DCGoogle Scholar
  43. Ganachaud A, Wunsch C, Marotzke J, Toole J (2000) Meridional overturning and large-scale circulation of the Indian Ocean. J Geophys Res Oceans 105:26117–26134.  https://doi.org/10.1029/2000JC900122 CrossRefGoogle Scholar
  44. Geehan J, Fiorellato F (2017) Estimation of EEZ catches in the IOTC database: report on the availability and quality of catch estimates. In: IOTC proceedings. IOTC, Victoria, p 14Google Scholar
  45. Geehan J, Fiorellato F, Pierre L (2016) Review of the statistical data and fishery trends for tropical tunas. In: IOTC proceedings. Victoria, p 47Google Scholar
  46. Govinden R, Dagorn L, Soria M, Filmalter JD (2010) Behaviour of tuna associated with drifting fish aggregating devices (FADs) in the Mozambique Channel. In: IOTC proceedings. IOTC, Victoria, p 22Google Scholar
  47. Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015–4024.  https://doi.org/10.1242/jeb.01267 CrossRefPubMedGoogle Scholar
  48. Grande M (2013) The reproductive biology, condition and feeding ecology of the skipjack, Katsuwonus pelamis, in the Western Indian Ocean. Universidad del Pais VascosGoogle Scholar
  49. Grande M, Murua H, Zudaire I et al (2014) Reproductive timing and reproductive capacity of the skipjack tuna (Katsuwonus pelamis) in the western Indian Ocean. Fish Res 156:14–22.  https://doi.org/10.1016/j.fishres.2014.04.011 CrossRefGoogle Scholar
  50. Grande M, Murua H, Zudaire I et al (2016) Energy allocation strategy of skipjack tuna Katsuwonus pelamis during their reproductive cycle. J Fish Biol 89:2434–2448.  https://doi.org/10.1111/jfb.13125 CrossRefPubMedGoogle Scholar
  51. Grewe PM, Feutry P, Hill PL et al (2015) Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource. Sci Rep 5:16916.  https://doi.org/10.1038/srep16916 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hall M (1992) The association of tunas with floating objects and dolphins. In: The association of tunas with floating objects and dolphins. La Jolla, CA, p 6Google Scholar
  53. Hallier JP, Fonteneau A (2015) Tuna aggregation and movement from tagging data: a tuna “hub” in the Indian Ocean. Fish Res 163:34–43.  https://doi.org/10.1016/j.fishres.2014.06.003 CrossRefGoogle Scholar
  54. Hallier JP, Gaertner D (2008) Drifting fish aggregation devices could act as an ecological trap for tropical tuna species. Mar Ecol Prog Ser 353:255–264.  https://doi.org/10.3354/meps07180 CrossRefGoogle Scholar
  55. Hampton J (2000) Natural mortality rates in tropical tunas: size really does matter. Can J Fish Aquat Sci 57:1002–1010.  https://doi.org/10.1139/f99-287 CrossRefGoogle Scholar
  56. Hassani S, Stéquert B (1991) Sexual maturity, spawning and fecundity of the yellowfin tuna (Thunnus albacares) of the Western Indian Ocean. IPTP Coll Vol Work 4:91–107Google Scholar
  57. Hoenig JM, Barrowman NJ, Pollock KH et al (1998) Models for tagging data that allow for incomplete mixing of newly tagged animals. Can J Fish Aquat Sci 55:1477–1483.  https://doi.org/10.1139/f97-258 CrossRefGoogle Scholar
  58. Holland KN, Brill RW, Chang RKC et al (1992) Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus). Nature 358:410–412.  https://doi.org/10.1038/358410a0 CrossRefPubMedGoogle Scholar
  59. Huggett JA (2014) Mesoscale distribution and community composition of zooplankton in the Mozambique Channel. Deep Sea Res Part II Top Stud Oceanogr 100:119–135.  https://doi.org/10.1016/j.dsr2.2013.10.021 CrossRefGoogle Scholar
  60. Hunter JR, Macewicz BJ (1985) Measurement of spawning frequency in multiple spawning fishes. NOAA Tech Rep NMFS 36:79–94Google Scholar
  61. Hunter JR, Macewicz BJ, Sibert JR (1986) The spawning frequency of skipjack tuna, Katsuwonus pelamis, from the South Pacific. Fish Bull 84:895–903Google Scholar
  62. IOTC (2018) Report of the 15th session of the compliance committee. IOTC, BangkokGoogle Scholar
  63. IOTC (2019) Report of the 5th technical committee on allocation criteria. IOTC, VictoriaGoogle Scholar
  64. ISSF (2014) Report of the ISSF Workshops on FADs as Ecological Traps, 29–31 January 2014—Sète, France. International Seafood Sustainability Foundation, Washington, DCGoogle Scholar
  65. Itano DG (2000) The reproductive biology of yellowfin tuna (Thunnus albacares) in Hawaiian waters and the western tropical Pacific Ocean: project summary. University of Hawaii, Joint Institute for Marine and Atmospheric ResearchGoogle Scholar
  66. Jaquemet S, Potier M, Ménard F (2011) Do drifting and anchored fish aggregating devices (FADs) similarly influence tuna feeding habits? A case study from the western Indian Ocean. Fish Res 107:283–290.  https://doi.org/10.1016/j.fishres.2010.11.011 CrossRefGoogle Scholar
  67. Jones S, Kumaran M (1963) Distribution of larval tuna collected by the Carlsberg foundation’s Dana expedition (1928–30) from the Indian Ocean. FAO Exp Pap 42(3):1753–1774Google Scholar
  68. Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2013) Life in 3-D: life history strategies in tunas, mackerels and bonitos. Rev Fish Biol Fish 23:135–155.  https://doi.org/10.1007/s11160-012-9284-4 CrossRefGoogle Scholar
  69. Kambona JJ, Marashi SH (1996) Process for the establishment of the Indian Ocean Tuna Commission, FAO. FAO, RomeGoogle Scholar
  70. Kaplan DM, Chassot E, Amandé JM et al (2014) Spatial management of Indian Ocean tropical tuna fisheries: potential and perspectives. ICES J Mar Sci 71:1728–1749.  https://doi.org/10.1093/icesjms/fst233 CrossRefGoogle Scholar
  71. Kojadinovic J, Potier M, Le Corre M et al (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146:548–566.  https://doi.org/10.1016/j.envpol.2006.07.015 CrossRefPubMedGoogle Scholar
  72. Kolody D, Hoyle S (2013) Evaluation of tag mixing assumptions for skipjack, yellowfin and bigeye tuna stock assessments in the Western Pacific and Indian Oceans. WCPFC, Pohnpei, Federated States of Micronesia, p 26Google Scholar
  73. Kolody D, Grewe P, Davies C, Proctor C (2013) Are Indian Ocean tuna populations assessed and managed at the appropriate spatial scale? A brief review of the evidence and implications. In: IOTC Proceedings. IOTC, San Sebastian, p 18Google Scholar
  74. Kolody D, Eveson JP, Hillary RM (2016) Modelling growth in tuna RFMO stock assessments: current approaches and challenges. Fish Res 180:177–193.  https://doi.org/10.1016/j.fishres.2015.06.016 CrossRefGoogle Scholar
  75. Kroodsma DA, Mayorga J, Hochberg T et al (2018) Tracking the global footprint of fisheries. Science 359:904–908.  https://doi.org/10.1126/science.aao5646 CrossRefPubMedGoogle Scholar
  76. Kunal SP, Kumar G, Menezes MR, Meena RM (2013) Mitochondrial DNA analysis reveals three stocks of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters. Conserv Genet 14:205–213CrossRefGoogle Scholar
  77. Langley A (2013) BET IO tag dispersal—a simple model. Presentation made at the Fifteenth Session of the IOTC Working Party on Tropical Tunas, San Sebastian, Spain, 23–28 October 2013Google Scholar
  78. Langley A (2015) Stock assessment of yellowfin tuna in the Indian Ocean using stock synthesis. In: IOTC proceedings. IOTC, Montpellier, p 82Google Scholar
  79. Langley A (2016a) Stock assessment of bigeye tuna in the Indian Ocean for 2016—model development and evaluation. In: IOTC proceedings. IOTC, Victoria, p 98Google Scholar
  80. Langley A (2016b) An update of the 2015 Indian Ocean yellowfin tuna stock assessment for 2016. In: IOTC proceedings. IOTC, Victoria, p 14Google Scholar
  81. Langley A, Million J (2012) Determining an appropriate tag mixing period for the Indian Ocean yellowfin tuna stock assessment. In: IOTC proceedings. IOTC, Grand Baie, p 53Google Scholar
  82. Laran S, Authier M, Van Canneyt O et al (2017) A comprehensive survey of pelagic megafauna: their distribution, densities, and taxonomic richness in the tropical southwest Indian Ocean. Front Mar Sci.  https://doi.org/10.3389/fmars.2017.00139 CrossRefGoogle Scholar
  83. Le Manach F, Gough C, Harris A et al (2012) Unreported fishing, hungry people and political turmoil: the recipe for a food security crisis in Madagascar? Mar Policy 36:218–225.  https://doi.org/10.1016/j.marpol.2011.05.007 CrossRefGoogle Scholar
  84. Lebourges-Dhaussy A, Huggett J, Ockhuis S et al (2014) Zooplankton size and distribution within mesoscale structures in the Mozambique Channel: a comparative approach using the TAPS acoustic profiler, a multiple net sampler and ZooScan image analysis. Deep Sea Res Part II Top Stud Oceanogr 100:136–152.  https://doi.org/10.1016/j.dsr2.2013.10.022 CrossRefGoogle Scholar
  85. Llopiz JK, Richardson DE, Shiroza A et al (2010) Distinctions in the diets and distributions of larval tunas and the important role of appendicularians. Limnol Oceanogr 55:983–996.  https://doi.org/10.4319/lo.2010.55.3.0983 CrossRefGoogle Scholar
  86. Lopez J, Moreno G, Ibaibarriaga L, Dagorn L (2017) Diel behaviour of tuna and non-tuna species at drifting fish aggregating devices (DFADs) in the Western Indian Ocean, determined by fishers’ echo-sounder buoys. Mar Biol.  https://doi.org/10.1007/s00227-017-3075-3 CrossRefGoogle Scholar
  87. Lorrain A, Graham BS, Popp BN et al (2015) Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Res Part II Top Stud Oceanogr 113:188–198.  https://doi.org/10.1016/j.dsr2.2014.02.003 CrossRefGoogle Scholar
  88. Magnuson JJ (1973) Comparative study of adaptations for continuous swimming and hydrostatic equilibrium of scombroid and xiphoid fishes. Fish Bull 71:337–356Google Scholar
  89. Magnuson JJ (1978) 4—Locomotion by scombrid fishes: hydromechanics, morphology, and behavior. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, London, pp 239–313Google Scholar
  90. Malone MA, Buck KM, Moreno G, Sancho G (2011) Diet of three large pelagic fishes associated with drifting fish aggregating devices (DFADs) in the western equatorial Indian Ocean. Anim Biodivers Conserv 34:287–294Google Scholar
  91. Marcille J, Veillon P (1973) Prospections et pêches thonières au Nord et à l’Ouest de Madagascar en 1972. ORSTOM, Nosy-BéGoogle Scholar
  92. Margulies D, Sutter JM, Hunt SL et al (2007) Spawning and early development of captive yellowfin tuna (Thunnus albacares). Fish Bull 105:249–265Google Scholar
  93. Marsac F, Fonteneau A, Ménard F (2000) Drifting FADs used in tuna fisheries: an ecological trap? In: Le Gall J-Y, Cayré P, Taquet M (eds) pp 537–552Google Scholar
  94. Martin S, Fiorellato F, Geehan J (2016) A pilot project for the IOTC Regional Observer Scheme. In: IOTC proceedings. IOTC, Victoria, p 23Google Scholar
  95. Matsumoto T, Satoh K, Toyonaga M (2014) Behavior of skipjack tuna (Katsuwonus pelamis) associated with a drifting FAD monitored with ultrasonic transmitters in the equatorial central Pacific Ocean. Fish Res 157:78–85.  https://doi.org/10.1016/j.fishres.2014.03.023 CrossRefGoogle Scholar
  96. Maufroy A, Kaplan DM, Bez N et al (2017) Massive increase in the use of drifting fish aggregating devices (dFADs) by tropical tuna purse seine fisheries in the Atlantic and Indian oceans. ICES J Mar Sci 74:215–225.  https://doi.org/10.1093/icesjms/fsw175 CrossRefGoogle Scholar
  97. Maury O (2017) Can schooling regulate marine populations and ecosystems? Prog Oceanogr 156:91–103.  https://doi.org/10.1016/j.pocean.2017.06.003 CrossRefGoogle Scholar
  98. McBride RS, Somarakis S, Fitzhugh GR et al (2015) Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish 16:23–57.  https://doi.org/10.1111/faf.12043 CrossRefGoogle Scholar
  99. McPherson GR (1991) Reproductive biology of yellowfin tuna in the eastern Australian Fishing Zone, with special reference to the north-western Coral Sea. Mar Freshw Res 42:465–477.  https://doi.org/10.1071/mf9910465 CrossRefGoogle Scholar
  100. Ménard F, Lorrain A, Potier M, Marsac F (2007) Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar Biol 153:141–152.  https://doi.org/10.1007/s00227-007-0789-7 CrossRefGoogle Scholar
  101. Ménard F, Benivary HD, Bodin N et al (2014) Stable isotope patterns in micronekton from the Mozambique Channel. Deep Sea Res Part II Top Stud Oceanogr 100:153–163.  https://doi.org/10.1016/j.dsr2.2013.10.023 CrossRefGoogle Scholar
  102. Menezes MR, Kumar G, Kunal SP (2012) Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D-loop region. J Fish Biol 80:2198–2212.  https://doi.org/10.1111/j.1095-8649.2012.03270.x CrossRefPubMedGoogle Scholar
  103. Miyake MP, Guillotreau P, ChinHwa S et al (2010) Recent developments in the tuna industry: stocks, fisheries, management, processing, trade and markets. FAO Fish Aquac Tech Pap 543:97Google Scholar
  104. Moreno G (2013) Pilot project to improve data collection for tuna, sharks and billfish from artisanal fisheries in the Indian Ocean. FAO, VictoriaGoogle Scholar
  105. Murua H, Eveson JP, Marsac F (2015) The Indian Ocean Tuna Tagging Programme: building better science for more sustainability. Fish Res 163:1–6.  https://doi.org/10.1016/j.fishres.2014.07.001 CrossRefGoogle Scholar
  106. Murua H, Rodriguez-Marin E, Neilson JD et al (2017) Fast versus slow growing tuna species: age, growth, and implications for population dynamics and fisheries management. Rev Fish Biol Fish.  https://doi.org/10.1007/s11160-017-9474-1 CrossRefGoogle Scholar
  107. Mutombene R, Sulemane NB, Salença A et al (2017) General characterization of artisanal purse seine and handline fisheries of northern coast of Mozambique and their impact on tuna and tuna like species. In: IOTC Proceedings. IOTC, Victoria, p 31Google Scholar
  108. Obura DO, Burgener V, Nicoll ME et al (2015) The Northern Mozambique Channel. Setting the foundations for a regional approach to marine governance. WWF International and CORDIO East Africa, MombasaGoogle Scholar
  109. Obura DO, Bandeira SO, Bodin N et al (2018) The Northern Mozambique Channel. In: World seas: an environmental evaluation: 2—the Indian Ocean to the Pacific. C. SheppardGoogle Scholar
  110. Palastanga V, van Leeuwen PJ, de Ruijter WPM (2006) A link between low-frequency mesoscale eddy variability around Madagascar and the large-scale Indian Ocean variability. J Geophys Res Oceans 111:C09029.  https://doi.org/10.1029/2005JC003081 CrossRefGoogle Scholar
  111. Pecoraro C, Zudaire I, Bodin N et al (2016) Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev Fish Biol Fish.  https://doi.org/10.1007/s11160-016-9460-z CrossRefGoogle Scholar
  112. Pecoraro C, Babbucci M, Franch R et al (2018) The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci Rep 8:13890.  https://doi.org/10.1038/s41598-018-32331-3 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pepperell J, Griffiths S, Kadagi N (2017) Acquisition of catch-and-effort and size data from sport fisheries in the Western Indian Ocean. In: IOTC proceedings. IOTC, Victoria, p 100Google Scholar
  114. Pethybridge H, Choy CA, Logan JM et al (2018) A global meta-analysis of marine predator nitrogen stable isotopes: relationships between trophic structure and environmental conditions. Glob Ecol Biogeogr 27:1043–1055.  https://doi.org/10.1111/geb.12763 CrossRefGoogle Scholar
  115. Petit G (1923) La vie sur les côtes de Madagascar et l’industrie indigène de la pêche. Ann Géographie 32:142–164.  https://doi.org/10.3406/geo.1923.9975 CrossRefGoogle Scholar
  116. Popova E, Yool A, Byfield V et al (2016) From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Glob Change Biol 22:2038–2053.  https://doi.org/10.1111/gcb.13247 CrossRefGoogle Scholar
  117. Potier M, Marsac F, Lucas V et al (2002) On-going research activities on trophic ecology of tuna in equatorial ecosystems of the Indian Ocean. In: IOTC proceedings. IOTC, Shanghai, pp 368–374Google Scholar
  118. Potier M, Marsac F, Lucas V et al (2004) Feeding partitioning among tuna taken in surface and mid-water layers: the case of Yellowfin (Thunnus albacares) and bigeye (T. obesus) in the western tropical Indian Ocean. West Indian Ocean J Mar Sci 3:51–62Google Scholar
  119. Potier M, Marsac F, Cherel Y et al (2007) Forage fauna in the diet of three large pelagic fish (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish Res 83:60–72.  https://doi.org/10.1016/j.fishres.2006.08.020 CrossRefGoogle Scholar
  120. Potier M, Romanov E, Cherel Y et al (2008) Spatial distribution of Cubiceps pauciradiatus (Perciformes:Nomeidae) in the tropical Indian Ocean and its importance in the diet of large pelagic fishes. Aquat Living Resour 21:123–134.  https://doi.org/10.1051/alr:2008026 CrossRefGoogle Scholar
  121. Potier M, Ménard F, Benivary HD, Sabatié R (2011) Length and weight estimates from diagnostic hard part structures of fish, crustacea and cephalopods forage species in the western Indian Ocean. Environ Biol Fishes 92:413–423.  https://doi.org/10.1007/s10641-011-9848-5 CrossRefGoogle Scholar
  122. Potier M, Bach P, Ménard F, Marsac F (2014) Influence of mesoscale features on micronekton and large pelagic fish communities in the Mozambique Channel. Deep Sea Res Part II Top Stud Oceanogr 100:184–199.  https://doi.org/10.1016/j.dsr2.2013.10.026 CrossRefGoogle Scholar
  123. Ranaivoson E, Ranaivoarison A (2013) Auto-évaluation des pêches comoriennes par les pêcheurs. COI, EbèneGoogle Scholar
  124. Reglero P, Tittensor DP, Álvarez-Berastegui D et al (2014) Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar Ecol Prog Ser 501:207–224.  https://doi.org/10.3354/meps10666 CrossRefGoogle Scholar
  125. Richards WJ, Simmons DC (1971) Distribution of tuna larvae (Pisces, Scombridae) in the northwestern Gulf of Guinea and off Sierra Leone. Fish Bull 69:555–568Google Scholar
  126. Richmond MD, Mohamed A (2006) The Tanzania FAD programmeGoogle Scholar
  127. Rieucau G, Fernö A, Ioannou CC, Handegard NO (2015) Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Rev Fish Biol Fish 25:21–37.  https://doi.org/10.1007/s11160-014-9367-5 CrossRefGoogle Scholar
  128. Roberts MJ, Ternon J-F, Morris T (2014) Interaction of dipole eddies with the western continental slope of the Mozambique Channel. Deep Sea Res Part II Top Stud Oceanogr 100:54–67.  https://doi.org/10.1016/j.dsr2.2013.10.016 CrossRefGoogle Scholar
  129. Roger C (1994) Relationships among yellowfin and skipjack tuna, their prey-fish and plankton in the tropical western Indian Ocean. Fish Oceanogr 3:133–141.  https://doi.org/10.1111/j.1365-2419.1994.tb00055.x CrossRefGoogle Scholar
  130. Romanov E, Potier M, Zamorov V, Ménard F (2009) The swimming crab Charybdis smithii: distribution, biology and trophic role in the pelagic ecosystem of the western Indian Ocean. Mar Biol 156:1089–1107.  https://doi.org/10.1007/s00227-009-1151-z CrossRefGoogle Scholar
  131. Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27:8501–8509.  https://doi.org/10.1175/jcli-d-14-00471.1 CrossRefGoogle Scholar
  132. Roxy MK, Modi A, Murtugudde R et al (2016) A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys Res Lett 43:826–833.  https://doi.org/10.1002/2015GL066979 CrossRefGoogle Scholar
  133. Sabarros PS, Ménard F, Lévénez J-J et al (2009) Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel. Mar Ecol Prog Ser 395:101–107.  https://doi.org/10.3354/meps08087 CrossRefGoogle Scholar
  134. Sabarros PS, Romanov EV, Bach P (2017) Movements and behaviour of yellowfin and bigeye tuna associated to oceanic structures in the western Indian Ocean. In: IOTC proceedings. IOTC, Victoria, p 14Google Scholar
  135. Sardenne F, Dortel E, Le Croizier G et al (2015) Determining the age of tropical tunas in the Indian Ocean from otolith microstructures. Fish Res 163:44–57.  https://doi.org/10.1016/j.fishres.2014.03.008 CrossRefGoogle Scholar
  136. Sardenne F, Bodin N, Chassot E et al (2016) Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids. Prog Oceanogr 146:75–88.  https://doi.org/10.1016/j.pocean.2016.06.001 CrossRefGoogle Scholar
  137. Schaefer KM (1996) Spawning time, frequency, and batch fecundity of yellowfin tuna, Thunnus albacares near Clipperton Atoll in the eastern Pacific Ocean. Fish Bull 94:98–112Google Scholar
  138. Schaefer KM (2001) Reproductive biology of tunas. In: Block B, Stevens E (eds) Tuna: physiology, ecology, and evolution. Academic Press, London, pp 225–270Google Scholar
  139. Schaefer KM, Fuller DW (2013) Simultaneous behavior of skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (T. albacares) tunas, within large multi-species aggregations associated with drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean. Mar Biol.  https://doi.org/10.1007/s00227-013-2290-9 CrossRefGoogle Scholar
  140. Schaefer KM, Fuller D, Miyabe N (2005) Reproductive biology of bigeye tuna (Thunnus obesus) in the eastern and central Pacific Ocean. IATTC Bull 23:33Google Scholar
  141. Schaefer K, Fuller D, Hampton J et al (2015) Movements, dispersion, and mixing of bigeye tuna (Thunnus obesus) tagged and released in the equatorial Central Pacific Ocean, with conventional and archival tags. Fish Res 161:336–355.  https://doi.org/10.1016/j.fishres.2014.08.018 CrossRefGoogle Scholar
  142. Schott FA, Xie S-P, McCreary JP Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:46.  https://doi.org/10.1029/2007RG000245 CrossRefGoogle Scholar
  143. Schouten MW, de Ruijter WPM, van Leeuwen PJ, Ridderinkhof H (2003) Eddies and variability in the Mozambique Channel. Deep Sea Res Part II Top Stud Oceanogr 50:1987–2003.  https://doi.org/10.1016/S0967-0645(03)00042-0 CrossRefGoogle Scholar
  144. Schouten MW, de Ruijter WPM, Ridderinkhof H (2005) A seasonal intrusion of subtropical water in the Mozambique Channel. Geophys Res Lett 32:L18601.  https://doi.org/10.1029/2005GL023131 CrossRefGoogle Scholar
  145. Sequeira A, Mellin C, Rowat D et al (2012) Ocean-scale prediction of whale shark distribution. Divers Distrib 18:504–518.  https://doi.org/10.1111/j.1472-4642.2011.00853.x CrossRefGoogle Scholar
  146. Soilihi AS (2017) Union des Comores Rapport national destiné au Comité scientifique de la Commission des thons de l’océan Indien, 2017. In: IOTC proceedings. IOTC, Victoria, p 8Google Scholar
  147. Stéquert B (1976) Etude de la maturité sexuelle, de la ponte et de la fécondité du listao (Katsuwonus pelamis) de la côte nord-ouest de Madagascar. Cah ORSTOM Sér Océan 14:227–247Google Scholar
  148. Stéquert B, Marsac F (1989) Tropical tuna—surface fisheries in the Indian Ocean. FAO Fish Tech Pap 282:238Google Scholar
  149. Stéquert B, Ramcharrun B (1995) La fécondité du listao (Katsuwonus pelamis) de l’ouest de l’océan Indien. Aquat Living Resour 8:79–89.  https://doi.org/10.1051/alr:1995006 CrossRefGoogle Scholar
  150. Stéquert B, Ramcharrun B (1996) La reproduction du listao (Katsuwonus pelamis) dans le bassin ouest de l’océan Indien. Aquat Living Resour 9:235–247.  https://doi.org/10.1051/alr:1996027 CrossRefGoogle Scholar
  151. Stéquert B, Rodriguez JN, Cuisset B, Menn FL (2001) Gonadosomatic index and seasonal variations of plasma sex steroids in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) from the western Indian ocean. Aquat Living Resour 14:313–318.  https://doi.org/10.1016/S0990-7440(01)01126-3 CrossRefGoogle Scholar
  152. Suman A, Irianto HE, Amri K, Nugraha B (2013) Population structure and reproduction of big eye tuna (Thunnus obesus) in Indian Ocean at western part of Sumatra and southern part of Java and Nusa Tengarra. In: IOTC proceedings. IOTC, San Sebastian, p 14Google Scholar
  153. Sun CL, Yeh SZ, Chang YJ et al (2013) Reproductive biology of female bigeye tuna Thunnus obesus in the western Pacific Ocean. J Fish Biol 83:250–271.  https://doi.org/10.1111/jfb.12161 CrossRefPubMedGoogle Scholar
  154. Tahindro A (2004) The implementation of UNCLOS in the Indian Ocean region: the case of Madagascar. Afr Yearb Int Law 12:349–435CrossRefGoogle Scholar
  155. Teh LSL, Teh LCL, Sumaila UR (2011) Quantifying the overlooked socio-economic contribution of small-scale fisheries in Sabah, Malaysia. Fish Res 110:450–458.  https://doi.org/10.1016/j.fishres.2011.06.001 CrossRefGoogle Scholar
  156. Tew Kai E, Marsac F (2010) Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel. Prog Oceanogr 86:214–223.  https://doi.org/10.1016/j.pocean.2010.04.010 CrossRefGoogle Scholar
  157. Tew-Kai E, Marsac F (2009) Patterns of variability of sea surface chlorophyll in the Mozambique Channel: a quantitative approach. J Mar Syst 77:77–88.  https://doi.org/10.1016/j.jmarsys.2008.11.007 CrossRefGoogle Scholar
  158. Toihir IM (2017) Six years for improving statistic data collection in Comoros. In: IOTC proceedings. IOTC, Victoria, p 14Google Scholar
  159. van der Elst R, Everett B, Jiddawi N et al (2005) Fish, fishers and fisheries of the Western Indian Ocean: their diversity and status. A preliminary assessment. Philos Trans R Soc Math Phys Eng Sci 363:263–284CrossRefGoogle Scholar
  160. Venkatasami A (1990) Introduction of fish aggregating devices in the Southwest Indian Ocean (a case study). FAO, Colombo, p 27Google Scholar
  161. Wang X, Chen Y, Truesdell S et al (2014) The large-scale deployment of fish aggregation devices alters environmentally-based migratory behavior of skipjack tuna in the Western Pacific Ocean. PLoS ONE 9:e98226.  https://doi.org/10.1371/journal.pone.0098226 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Ward P, Hindmarsh S (2007) An overview of historical changes in the fishing gear and practices of pelagic longliners, with particular reference to Japan’s Pacific fleet. Rev Fish Biol Fish 17:501–516.  https://doi.org/10.1007/s11160-007-9051-0 CrossRefGoogle Scholar
  163. Weimerskirch H, Corre ML, Jaquemet S et al (2004) Foraging strategy of a top predator in tropical waters: great frigatebirds in the Mozambique Channel. Mar Ecol Prog Ser 275:297–308CrossRefGoogle Scholar
  164. Whitlock RE, Hazen EL, Walli A et al (2015) Direct quantification of energy intake in an apex marine predator suggests physiology is a key driver of migrations. Sci Adv 1:e1400270.  https://doi.org/10.1126/sciadv.1400270 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Williams AJ, Leroy BM, Nicol SJ et al (2013) Comparison of daily- and annual-increment counts in otoliths of bigeye (Thunnus obesus), yellowfin (T. albacares), southern bluefin (T. maccoyii) and albacore (T. alalunga) tuna. ICES J Mar Sci J Cons 70:1439–1450.  https://doi.org/10.1093/icesjms/fst093 CrossRefGoogle Scholar
  166. Young JW, Davis TLO (1990) Feeding ecology of larvae of southern bluefin, albacore and skipjack tunas (Pisces: Scombridae) in the eastern Indian Ocean. Mar Ecol Prog Ser 61:17–29CrossRefGoogle Scholar
  167. Yuen HSH (1966) Swimming speeds of yellowfin and skipjack tuna. Trans Am Fish Soc 95:203–209.  https://doi.org/10.1577/1548-8659(1966)95%5b203:SSOYAS%5d2.0.CO;2 CrossRefGoogle Scholar
  168. Zudaire I, Murua H, Grande M, Bodin N (2013) Reproductive potential of the yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Fish Bull 111:252–264CrossRefGoogle Scholar
  169. Zudaire I, Murua H, Grande M et al (2014) Accumulation and mobilization of lipids in relation to reproduction of yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Fish Res 160:50–59.  https://doi.org/10.1016/j.fishres.2013.12.010 CrossRefGoogle Scholar
  170. Zudaire I, Murua H, Grande M et al (2015) Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Mar Biol 162:2363–2377.  https://doi.org/10.1007/s00227-015-2763-0 CrossRefGoogle Scholar
  171. Zudaire I, Chassot E, Murua H, et al (2016) Sex-ratio, size at maturity, spawning period and fecundity of bigeye tuna (Thunnus obesus) in the western Indian Ocean. In: IOTC proceedings. IOTC, Victoria, p 19Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Seychelles Fishing AuthorityVictoriaSeychelles
  2. 2.MARBEC, Univ. Montpellier, CNRS, Ifremer, IRDVictoriaSeychelles
  3. 3.Maurice Lamontagne Institute, Fisheries & Oceans CanadaMont-JoliCanada
  4. 4.CORDIO East AfricaMombasaKenya

Personalised recommendations